汽车设计需要具超低 IQ 的 65V 同步降压型转换器

引言

“在全球各种立法持续不断地推动着下一代汽车技术的发展,将进一步强化车辆的排放控制和安全性。业界的竞争和消费者的预期正在导致汽车连接能力的提升,可连接至云和个人便携式设备。因此,对于促成型半导体器件的需求预计在未来 7 年中将达到 5% 的年平均复合增长率 (CAAGR),到 2021 年,总的市场规模将超过 410 亿美元,而 2013 年时则为 275 亿美元。美国市场研究公司 Strategy Analytics 的分析也与此一致,认为市场对于微控制器和功率半导体元件的需求将占到销售收入的 40% 以上。”[资料来源:Strategy Analytics 公司 2014 年 5 月发布]

Strategy Analytics 对于汽车和商用车辆中电子产品所占比重的增长预测给出了非常定量的描述,但更加重要的是其阐述了电源 IC 在此增长过程中所起的关键性作用。这些新型电源 IC 设计必须提供:

1)尽可能高的效率以最大限度地缓解热问题并优化电池运行时间

2)采用多种电池输入电压工作的能力;单节 (汽车) 和双节 (商用车辆) 铅酸电池应用能够适应很宽的瞬态电压摆幅

3)超低的静态电流,以使安全、环境控制和信息娱乐系统等“始终保持接通”系统能够在汽车引擎 (交流发电机) 不运转的情况下保持工作状态而不消耗车载电池的电能

4)2MHz 或更高的开关频率,以避免开关噪声进入 AM 无线电频段并保持非常小的解决方案占板面积

5)尽可能低的 EMI/EMC 辐射,以减轻电子系统内部的噪声干扰问题

提高电源 IC 性能水平的目标是设计日益复杂且数量庞大的车用电子系统,以最大限度地提高舒适性、安全性和性能,同时最大限度地减少有害排放。推动车载电子产品成长的具体应用见诸于车辆的各个方面。例如:包括车道监视、自适应安全控制和自动转向、调光车前灯和信息娱乐系统 (远程信息处理) 在内的新型安全系统持续发展并在相同的空间里“塞”进了更多的功能,而且还必须支持数量不断增加的云应用。高级引擎管理系统实现了停止-启动系统以及电子负载变速器和引擎控制。传动系统和底盘管理旨在同时改善性能、安全性和舒适度。几年前这些系统还仅见于“高档”豪华型车辆,但是如今每家制造商的汽车通常都配备了此类系统,因而促使汽车电源 IC 以更高的速率增长。

车载电子系统成长的主要推动力之一是许多可改善车辆性能、舒适性和安全性的复杂电子系统的普及。不过,很多此类系统也是专为在众多商用车辆 (包括货车、公共汽车、铲车等等) 中使用而设计的。这些应用一般采用双电池。但是许多汽车系统设计人员都希望能够利用相同的设计来应对采用单节电池的汽车和采用双节电池的商用车辆,因而需要一款可适应这两种配置的电源 IC。

通过采用两个串联的铅酸电池,标称电池电压增加至 24V,这就要求在抛负载期间提供至 60V 的瞬态保护,相比之下,采用 12V 标称电池电压的汽车其抛负载要求则为 36V。与此相反,采用单节电池的汽车应用要求电源 IC 能在输入低至 3.5V 的情况下运作,以适应冷车发动和车辆停-启时的低起动电压。在双节电池应用中,这种低输入要求极大地放宽了,只需要满足 7V (电池电压) 的最小值。在图 1 中,可以看到当采用单节铅酸电池时冷车发动 / 车辆停-启和抛负载期间的宽暂态电压摆幅。双节电池应用虽然看起来与之相似,但抛负载期间的最大电压通常为 60V,而冷车发动 / 车辆停-启过程中的最小电压为 7V。

 

图 1:36V 抛负载瞬变和 4V 冷车发动场合中的 LT8620

图 1:36V 抛负载瞬变和 4V 冷车发动场合中的 LT8620

高效运作

在汽车应用中,电源管理 IC 的高效运作是最重要的,原因有二。首先,电源转换的效率越高,以热量的形式浪费掉的电能就越少。由于热量是所有电子系统实现长期可靠性的大敌,因此必须对其实施有效的管控,这一般需要采用散热器来提供冷却作用,从而增加了解决方案的复杂性、尺寸和成本。其次,混合动力汽车或电动汽车 (EV) 中的任何电能损耗都将直接导致车辆可行驶里程的缩短。直到最近,高电压单片式电源管理 IC 与高效率同步整流设计之间一直是互相排斥的,因为所需的 IC 工艺不能同时支持这两个目标。传统上,极高效率的解决方案是高电压控制器,其采用外部 MOSFET 以进行同步整流。然而,与单片式可替代方案相比,此类配置对于 15W 以下的应用显得相对复杂和庞大笨重。幸运的是,目前市场上已经有了能够提供高电压 (至 65V) 和高效率以及内部同步整流功能的新型电源管理 IC。

“始终保持接通”系统需要超低电源电流

许多电子子系统必需在“待机”或“保活”模式中运作,当处于该状态时其在一个稳定的电压下吸收极小的静态电流。这些电路可见于大多数导航、安全、防护和引擎管理电子电源系统。此类子系统都会采用多个微处理器和微控制器。大多数豪华型轿车均安装了超过 150 个这类 DSP,而其中的大约 20% 需要执行“始终保持接通”的操作。在这些系统中,电源转换 IC 必须工作于两种不同的模式。首先,当汽车在行驶时,负责为这些 DSP 供电的电源转换电路通常将以满电流 (由电池和充电系统馈送) 运作。然而,当汽车点火装置关闭时,这些系统中的微处理器必须保持运行,并要求其电源 IC 在从电池吸收极小电流的同时提供一个恒定的电压。由于可能会有 30 多个“始终保持接通”的此类处理器一起工作,因此即使当点火装置关闭时电池所承受的电能需求量也是很大。为这些“始终保持接通”的处理器供电所需的总电源电流可达几百毫安 (mA),这有可能在数日之内彻底耗尽电池的电量。比如:如果一辆汽车的高电压降压型转换器各需 2mA 的电源电流,那么把来自安全系统、GPS 系统和遥控门锁系统的 30 个这样的转换器与其他必须始终保持接通的系统 (如 ABS 刹车) 以及源于电动车窗的漏电流加起来,就有可能在三周的漫长商务旅行之后耗尽电池的电能,从而使之无法发动引擎。因此,必需大幅度地减小这些电源的静态电流以延长电池寿命,并且不增加电子系统的尺寸或复杂性。就 DC/DC 转换器而言,对于高输入电压能力和低静态电流的要求直到最近还是互相排斥的参数。为了更好地管理这些要求,几家汽车制造商在 10 年前为每个“始终保持接通”的 DC/DC 转换器设立了一个 <100μA 的低静态电流目标,但是如今的优选指标则是低于 10μA。很幸运,新一代的电源 IC 已经推出,其提供的静态电流低于 3μA。

ADI 技术视频more

LT3094: 在 1MHz 具 0.8μV<sub>RMS</sub> 噪声的负 LDO

LT3094: 在 1MHz 具 0.8μVRMS 噪声的负 LDO

LT3094 是一款高性能低压差负线性稳压器,其具有 ADI 的超低噪声和超高 PSRR 架构,适合为噪声敏感型应用供电。该器件可通过并联以增加输出电流和在 PCB 上散播热量。

观看此技术视频
LTM8002:高效率、超低 EMI 降压型电源 μModule

LTM8002:高效率、超低 EMI 降压型电源 μModule

LTM8002 是一款 40VIN、2.5A 降压型μModule® 稳压器。它内置了开关控制器、电源开关、电感器和所有的支持性组件。该器件支持 3.4V 至 40V 的输入电压范围,和 0.97V 至 18V 的输出电压。

观看此技术视频
具电源系统管理功能的超薄型 μModule 稳压器

具电源系统管理功能的超薄型 μModule 稳压器

LTM4686 是一款双通道 10A 或单通道 20A 超薄型降压 μModule 稳压器。该器件1.82mm 的高度使之可放置到非常靠近负载 (FPGA 或 ASIC) 的地方,从而共用一个散热器。其 PMBus 接口使用户能改变主要的电源参数。

观看此技术视频

电源管理杂志more

Journal of Power Management (2018 年 8 月刊) 英文版

Journal of Power Management (2018 年 8 月刊) 英文版

Journal of Power Management (2018 年 4 月刊) 英文版

Journal of Power Management (2018 年 4 月刊) 英文版

Journal of Power Management (2018 年 1 月刊) 英文版

Journal of Power Management (2018 年 1 月刊) 英文版

关闭ADI官方微信二维码