为工业物联网正确选择无线网格网络协议以实现新应用

工业物联网的最大承诺之一是,利用从无线传感器网络 (WSN) 收集的真实数据提高效率和简化业务实践。对 WSN 的需求多种多样,传感器可能遍布建筑物、城市街道、工厂、隧道和桥梁、行驶中的车辆、或者偏远地点 (例如: 沿管线放置和气象站) 等等。这类应用对工业物联网的常见要求是,WSN 功耗低,提供与有线网络类似的可靠性,而且支持种类繁多的网络形状、规模和数据速率。

无线网格网络得到了越来越广泛的采用,因为这类网络能够利用功率相对低的无线电设备在节点之间转发信息,并覆盖很大的区域,还能够使用替代的通路和途径以克服干扰问题,保持很高的可靠性。尤其是有一种称为时间同步通道跳频 (TSCH) 的网格网络技术,该技术由凌力尔特的 Dust Networks 率先提出,并已纳入 WirelessHART 工业标准。TSCH 经过实用验证,可提供工业物联网所需性能。TSCH 网络一般提供 >99.999% 的数据可靠性,而且所有无线节点 (甚至路由节点) 的小型锂电池之寿命都长达多年。相比之下,其他各种网格网络尽管采用的技术听起来类似 (例如,“频率捷变”相对于“通道跳频”,“休眠”相对于“时间同步” 网格),但是所提供的性能却显著不同。因此,这些无线网络的不同细节决定了,协议选择对 WSN 的性能以及网络对应用的总体适用性有极大影响。

无线传感器网络面临的挑战

无线从本质上而言是不可靠的,因此重要的是了解不可靠性的来源,以考虑怎样在通信系统中应对这问题。在有线通信中,通信信号受到电缆屏蔽,不与外界接触。与此不同,RF 信号露天传播,与周围环境相互影响。因此其他 RF 信号传输源有可能对有用 RF 信号造成有效干扰。

不过,更为常见的问题是多径衰落的影响,所谓多径衰落,即 RF 信号可能因其自身从周围表面反射回来且反射信号之间相位不同而被衰减 (图 1)。手机用户每天都会遇到多径衰落问题,当在某一点手机信号强度似乎很弱时,可能只需移动几厘米,信号强度就能改善。多径衰落的影响随时间而变,因为附近的反射表面 (例如人、车、门等) 一般会移动。最终结果是,随着时间推移,任一 RF 通道的信号质量都会发生很大变化。

图 1:多径衰落 ─ 无线信号在接收器端 (B) 的强度不仅受直接路径 (PD) 影响,而且受反射路径 (PM1 和 PM2) 影响,反射信号到达接收器端时,相位可能不同,从而导致显著的信号衰落。

图 1:多径衰落 ─ 无线信号在接收器端 (B) 的强度不仅受直接路径 (PD) 影响,而且受反射路径 (PM1 和 PM2) 影响,反射信号到达接收器端时,相位可能不同,从而导致显著的信号衰落。

使这种挑战更加严峻的是,多径衰落是不可预测的。按照定义,网络必须在通道性能受到多经衰落影响 (因此也要估算这种影响) 的通道上有效传送数据。因此,尽管运用简单的无源信号强度测量方法 (RSSI) 测量未用通道的概念可能有助于检测有源干扰信号,但是用这种方法却不可能预测多径衰落情况下的通道适用性。

幸运的是,既然多径衰落对每个 RF 通道的影响都不同,而且随时间推移不断变化,那么采用通道跳频实现频率多样性,就可以最大限度减小多径衰落的负面影响。WSN 协议面临的挑战是,能否在大型多跳网络上运用通道跳频技术。

在 WSN 中的常见采用方法

为了解在受到这些限制的情况下,WSN 性能有何不同,我们先要看一看,在一些无线网格网络中,为实现频率多样性并降低功耗,常常采用哪些方法。

单通道 WSN 和通道捷变 ─ 在一些简单的无线网格网络中,一种常见方法是让所有节点都在单一通道上工作。既然仅用一个 RF 通道,那么按照定义,一次只能有一个设备发送信号。由于相对易于实现,网络协议栈开发人员依然常常选择单通道工作方式,而以这种方式提供的 WSN 几乎没有频率多样性。

为了应对通道中存在的有源 RF 干扰问题,有些单通道 WSN 采用了所谓的通道捷变机制。采用这种机制的网络可以向所有节点广播信息,以改变工作通道。不过,即使在通道捷变网络中,在任一时间点上,网络仍然在单一通道上工作。采用通道捷变方法的前提是,假定存在一个对整个网络都足够好的通道。然而,真实数据显示,在多径衰落的影响下,任何 RF 通道在网络寿命期内,都会经历严重的路径劣化问题,这会导致节点在几分钟甚至几小时内无法工作 (参见配文:“多径衰落对无线通信的影响”)。尽管采用通道捷变方法的网络可以改变通道,避开某个有源干扰信号,但是既然该网络仍然在单一通道上工作,那么就仍然易于受到多径衰落的灾难性影响。

全网络休眠动态占空比 (Duty Cycling by Network Wide Sleeping) ─ 为了以低功率运行,无线传感器网络进行某种形式的占空比调节,以最大限度减少有效运行 (例如发送、接收等,这时通常消耗数 mA 功率) 时间所占百分比,同时最大限度增大低功耗休眠模式 (一般吸取 1mA 或更小的电流) 在时间上所占百分比。有些无线传感器网络采用了全网络休眠方法 (有时称为“休眠型”网格网络),采用这种方法时,网络中的所有节点会在较长时间内同时处于低功耗休眠状态,并几乎在开始发送 / 接收 / 转发网络流量的同时唤醒。采用这种休眠方法时,网络在待用期间完全不能用于通信。例如,如果一个 WSN 在 1 小时唤醒一次,那么在这 1 小时中,该网络不能发送报警信息,也不能接收来自控制器的信息,因此无法打开所附的报警指示器。还有一点也很重要,即需要考虑全网络休眠方法对 WSN 应对真实运行情况的能力有哪些影响。在较长的休眠期内,周围 RF 环境仍然是动态变化的。在网络休眠时,任何信号通路出现不稳定,都只能等网络唤醒以后才能修复。更加麻烦的是,休眠型网络往往是单通道网络,这在网络运行期间进一步给网络增加了压力,同时增加了通信不稳定的风险。

ADI 技术视频more

LT3094: 在 1MHz 具 0.8μV<sub>RMS</sub> 噪声的负 LDO

LT3094: 在 1MHz 具 0.8μVRMS 噪声的负 LDO

LT3094 是一款高性能低压差负线性稳压器,其具有 ADI 的超低噪声和超高 PSRR 架构,适合为噪声敏感型应用供电。该器件可通过并联以增加输出电流和在 PCB 上散播热量。

观看此技术视频
LTM8002:高效率、超低 EMI 降压型电源 μModule

LTM8002:高效率、超低 EMI 降压型电源 μModule

LTM8002 是一款 40VIN、2.5A 降压型μModule® 稳压器。它内置了开关控制器、电源开关、电感器和所有的支持性组件。该器件支持 3.4V 至 40V 的输入电压范围,和 0.97V 至 18V 的输出电压。

观看此技术视频
具电源系统管理功能的超薄型 μModule 稳压器

具电源系统管理功能的超薄型 μModule 稳压器

LTM4686 是一款双通道 10A 或单通道 20A 超薄型降压 μModule 稳压器。该器件1.82mm 的高度使之可放置到非常靠近负载 (FPGA 或 ASIC) 的地方,从而共用一个散热器。其 PMBus 接口使用户能改变主要的电源参数。

观看此技术视频

电源管理杂志more

Journal of Power Management (2018 年 8 月刊) 英文版

Journal of Power Management (2018 年 8 月刊) 英文版

Journal of Power Management (2018 年 4 月刊) 英文版

Journal of Power Management (2018 年 4 月刊) 英文版

Journal of Power Management (2018 年 1 月刊) 英文版

Journal of Power Management (2018 年 1 月刊) 英文版

关闭ADI官方微信二维码