高压浪涌抑制器取代笨重的无源组件 并更易于满足 MIL-STD-1275D 要求
尖峰
MOSFET M1 处理 +250V 尖峰情况,该 MOSFET 规定从漏极到源极承受超过 300V 的电压。MIL-STD-1275D 规定,输入能量限制到 15mJ,完全处于这个 MOSFET 能力范围之内。图 8 显示,输入端的 +250V 尖峰与输出之间隔离了。
图 8:正的输入尖峰
类似地,-250V 尖峰测试结果如图 9 所示。在这种情况下,二极管 D1 在 -250V 尖峰时反向偏置,隔离了来自 M2 的尖峰和输出。D1 也提供反向极性保护,从而防止负输入电压出现在输出端。(D1 前面的 LTC4366 浪涌抑制器无需额外保护,就能承受反向电压和 -250V 尖峰。)
图 9:负输入尖峰
可选双向瞬态电压抑制器 (TVS) 放置在输入端以提供额外保护。其 150V 击穿电压不影响电路在低于 100V 时工作。对于输入端不想要 TVS 的应用而言,这种可选组件可以去除。请注意,在图 8 和 9 中,输出电压曲线 (VOUT) 显示,在 MIL-STD-1275D 尖峰期间有高频振铃,这是当所有电阻和电感都最大限度减小、0.1µF 测试电容器直接在电路输入端放电时,在电源和地走线中流动的大电流产生之测量干扰。
纹波
若要满足 MIL-STD-1275D 纹波规格要求,需要更多的组件。二极管 D1 与电容器 C1 - C12 构成一个 AC 整流器。整流后的信号出现在 DRAIN2 节点。
LT4363 与检测电阻器 RSENSE 相结合,将最大电流限制到 5A (典型值)。如果输入纹波波形的上升沿试图以超过 5A 的电流上拉输出电容器,那么 LT4363 通过下拉 M2 的栅极的瞬间地限制住该电流。
为了快速地恢复栅极电压,用组件 D3 – D4、C13 – C15 构成的小型充电泵补充 LT4363 的内部充电泵,以快速上拉 MOSFET M2 的栅极。即便如此,在这种纹波情况下,可用负载电流必须降至 2.8A。图 10 显示,在纹波测试时仍然给输出供电。
图 10:14VP–P 输入纹波情况
过热保护
最后,过热保护由组件 Q1、Q2、R1 – R4 和热敏电阻器 RTHERM 实现。如果 M2 散热器 (HS3) 的温度超过 105°C,那么 Q2A 就下拉 LT3463 的 UV 引脚,强制 MOSFET M2 断开,限制其最高温度。
应该提到的是,如果采用这些规定的组件,那么在启动模式初次啮合浪涌时,该电路仅保证工作至 8V 最低电压,而不是 MIL-STD-1275D 规定的 6V 最低电压。
一般情况下,EMI 滤波器放置在 MIL-STD-1275D 兼容系统的输入端,而浪涌抑制器并未消除对滤波的需求,它们的线性模式工作未引入额外噪声。
结论
凌力尔特的浪涌抑制器产品用 MOSFET 隔离高压输入浪涌和尖峰,简化了 MIL-STD-1275D 兼容问题,同时为下游电路提供不间断的供电。用串联组件隔离电压可避免损坏和保险丝熔化,当电路试图用笨重的无源组件将很多能量分流到地时,会出现这类问题。此外,本文已显示,即使最大瞬态功耗 (例如在高压浪涌) 超过单个 MOSFET 所能应对的范围,可用多个串联 MOSFET 支持更大的功率。
新品more
ADI 技术视频more
LT3094: 在 1MHz 具 0.8μVRMS 噪声的负 LDO
LT3094 是一款高性能低压差负线性稳压器,其具有 ADI 的超低噪声和超高 PSRR 架构,适合为噪声敏感型应用供电。该器件可通过并联以增加输出电流和在 PCB 上散播热量。
LTM8002:高效率、超低 EMI 降压型电源 μModule
LTM8002 是一款 40VIN、2.5A 降压型μModule® 稳压器。它内置了开关控制器、电源开关、电感器和所有的支持性组件。该器件支持 3.4V 至 40V 的输入电压范围,和 0.97V 至 18V 的输出电压。
具电源系统管理功能的超薄型 μModule 稳压器
LTM4686 是一款双通道 10A 或单通道 20A 超薄型降压 μModule 稳压器。该器件1.82mm 的高度使之可放置到非常靠近负载 (FPGA 或 ASIC) 的地方,从而共用一个散热器。其 PMBus 接口使用户能改变主要的电源参数。