开关模式电源的建模和环路补偿设计
图 9:COUT 电容器变化导致功率级 Gdv(s) 相位显著变化
升压型转换器的小信号模型
利用同样的 3 端子 PWM 开关单元平均式小信号建模方法,也可以为升压型转换器建模。图 10 显示了怎样为升压型转换器建模,并将其转换为线性 AC 小信号模型电路。
图 10:升压型转换器的 AC 小信号建模电路
升压型转换器功率级的转移函数 Gdv(s) 可从等式 5 中得出。它也是一个二阶系统,具有 L/C 谐振。与降压型转换器不同,升压型转换器除了 COUT ESR 零点,还有一个右半平面零点 (RHPZ) 。该 RHPZ 导致增益升高,但是相位减小 (变负)。等式 6 也显示,这个 RHPZ 随占空比和负载电阻不同而变化。既然占空比是 VIN 的函数,那么升压型转换器功率级的转移函数 Gdv(s) 就随 VIN 和负载电流而变。在低 VIN 和大负载 IOUT_MAX 时,RHPZ 位于最低频率处,并导致显著的相位滞后。这就使得难以设计带宽很大的升压型转换器。作为一个一般的设计原则,为了确保环路稳定性,人们设计升压型转换器时,限定其带宽低于其最低 RHPZ 频率的 1/10。其他几种拓扑,例如正至负降压 / 升压、反激式 (隔离型降压 / 升压)、SEPIC 和 CUK 转换器,所有都存在不想要的 RHPZ,都不能设计成带宽很大、瞬态响应很快的解决方案。
图 11:升压型转换器功率级小信号占空比至 VO 转移函数随 VIN 和负载而改变
用电压模式控制闭合反馈环路
输出电压可以由闭合的反馈环路系统调节。例如,在图 12 中,当输出电压 VOUT 上升时,反馈电压 VFB 上升,负反馈误差放大器的输出下降,因此占空比 d 下降。结果,VOUT 被拉低,以使 VFB = VREF。误差运算放大器的补偿网络可以是 I 型、II 型或 III 型反馈放大器网络。只有一个控制环路调节 VOUT。这种控制方法称为电压模式控制。凌力尔特公司的 LTC3861 和 LTC3882 就是典型的电压模式降压型控制器。
图 12:具闭合电压反馈环路的电压模式降压型转换器方框图
为了优化电压模式 PWM 转换器,如图 13 所示,通常需要一种复杂的 III 型补偿网络,以凭借充足的相位裕度设计一个快速环路。如等式 7 和图 14 所示,这种补偿网络在频率域有 3 个极点和两个零点:低频积分极点 (1/s) 提供高的 DC 增益,以最大限度减小 DC 调节误差,两个零点放置在系统谐振频率 f0 附近,以补偿由功率级的 L 和 C 引起的 –180° 相位延迟,在 fESR 处放置第一个高频极点,以消除 COUT ESR 零点,第二个高频极点放置在想要的带宽 fC 以外,以衰减反馈环路中的开关噪声。III 型补偿相当复杂,因为这种补偿需要 6 个 R/C 值。找到这些值的最佳组合是个非常耗时的任务。
图 13:用于电压模式转换器的 III 型反馈补偿网络
图 14:III 型补偿 A(s) 提供 3 个极点和两个零点,以实现最佳的总体环路增益 TV(s)
新品more
ADI 技术视频more
LT3094: 在 1MHz 具 0.8μVRMS 噪声的负 LDO
LT3094 是一款高性能低压差负线性稳压器,其具有 ADI 的超低噪声和超高 PSRR 架构,适合为噪声敏感型应用供电。该器件可通过并联以增加输出电流和在 PCB 上散播热量。
LTM8002:高效率、超低 EMI 降压型电源 μModule
LTM8002 是一款 40VIN、2.5A 降压型μModule® 稳压器。它内置了开关控制器、电源开关、电感器和所有的支持性组件。该器件支持 3.4V 至 40V 的输入电压范围,和 0.97V 至 18V 的输出电压。
具电源系统管理功能的超薄型 μModule 稳压器
LTM4686 是一款双通道 10A 或单通道 20A 超薄型降压 μModule 稳压器。该器件1.82mm 的高度使之可放置到非常靠近负载 (FPGA 或 ASIC) 的地方,从而共用一个散热器。其 PMBus 接口使用户能改变主要的电源参数。