开关模式电源的建模和环路补偿设计
谷值电流模式控制器产生受控 FET 接通时间,并一直等待直到电感器谷值电流达到其谷值限制 (VITH) 以才再次接通控制 FET。因此,电源可以在控制 FET 的 TOFF 时间响应负载升高瞬态。此外,既然接通时间是固定的,那么控制 FET 的 TON_min 可以比峰值电流模式控制时短,以允许更高的 fSW,实现高降压比应用。谷值电流模式控制不需要额外的斜率补偿就能实现电流环路稳定性。然而,使用谷值电流模式控制时,因为允许开关周期 TS 变化,所以在示波器上,开关节点波形可能出现更大的抖动。LTC3833 和 LTC3838 是典型的谷值电流模式控制器。
为具备闭合电流环路的新功率级建模
图 19 显示,通过仅将电感器作为受放大器 ITH 引脚电压控制的电流源,产生了一个简化、具内部电流环路的降压型转换器功率级的一阶模型。类似方法也可用于其他具电感器电流模式控制的拓扑。这个简单的模型有多好? 图 20 显示了该一阶模型和一个更复杂但准确的模型之间转移函数 GCV(s) = vOUT/vC 的比较结果。这是一个以 500kHz 开关频率运行的电流模式降压型转换器。在这个例子中,一阶模型直到 10kHz 都是准确的,约为开关频率 fSW 的 1/50。之后,一阶模型的相位曲线就不再准确了。因此这个简化的模型仅对于带宽较小的设计才好用。
图 19:电流模式降压型转换器的简单一阶模型
图 20:电流模式降压型转换器的一阶模型和准确模型之间的 GCV(s) 比较
实际上,针对电流模式转换器,在整个频率范围内开发一个准确的小信号模型相当复杂。R. Ridley的电流模式模型 [3] 在电源行业是最流行的一种模型,用于峰值电流模式和谷值电流模式控制。最近,Jian Li 为电流模式控制开发了一种更加直观的电路模型 [4],该模型也可用于其他电流模式控制方法。为了简便易用,LTpowerCAD 设计工具实现了这些准确模型,因此,即使一位经验不足的用户,对 Ridley 或 Jian Li 的模型没有太多了解,也可以非常容易地设计一个电流模式电源。
电流模式转换器的环路补偿设计
在图 16 和图 21 中,具闭合电流环路的功率级 Gcv(s) 由功率级组件的选择决定,主要由电源的 DC 规格 / 性能决定。外部电压环路增益 T(s) = GCV(s) • A(s) • KREF(s) 因此由电压反馈级 KREF(s) 和补偿级 A(s) 决定。这两个级的设计将极大地决定电源的稳定性和瞬态响应。
图 21:反馈环路设计的控制方框图
总之,闭合电压环路 T(s) 的性能由两个重要参数决定:环路带宽和环路稳定性裕度。环路带宽由交叉频率 fC 量化,在这一频点上,环路增益 T(s) 等于1 (0dB)。环路稳定性裕度一般由相位裕度或增益裕度量化。环路相位裕度的定义是在交叉频率点上总体 T(s) 相位延迟和 –180° 之差。通常需要 45° 或 60° 最小相位裕度以确保稳定性。对于电流模式控制而言,为了衰减电流环路中的开关噪声,环路增益裕度定义为在 ½ • fSW 处的衰减。一般而言,希望在 ½ • fSW 处有最小 8dB 衰减 (-8dB 环路增益)。
选择想要的电压环路交叉频率 fC
更大的带宽有助于实现更快的瞬态响应。不过,增大带宽通常会降低稳定性裕度,使控制环路对开关噪声更加敏感。一个最佳设计通常在带宽 (瞬态响应) 和稳定性裕度之间实现了良好的平衡。实际上,电流模式控制还通过在 1/2 • fSW 处电流信号的采样效应 [3],而引入了一对双极点。这些双极点在 ½ • fSW 附近引入了不想要的相位延迟。一般而言,要获得充足的相位裕度并充分衰减 PCB 噪声,交叉频率就要选为低于相位开关频率 fSW 的 1/10 至 1/6。
新品more
ADI 技术视频more
LT3094: 在 1MHz 具 0.8μVRMS 噪声的负 LDO
LT3094 是一款高性能低压差负线性稳压器,其具有 ADI 的超低噪声和超高 PSRR 架构,适合为噪声敏感型应用供电。该器件可通过并联以增加输出电流和在 PCB 上散播热量。
LTM8002:高效率、超低 EMI 降压型电源 μModule
LTM8002 是一款 40VIN、2.5A 降压型μModule® 稳压器。它内置了开关控制器、电源开关、电感器和所有的支持性组件。该器件支持 3.4V 至 40V 的输入电压范围,和 0.97V 至 18V 的输出电压。
具电源系统管理功能的超薄型 μModule 稳压器
LTM4686 是一款双通道 10A 或单通道 20A 超薄型降压 μModule 稳压器。该器件1.82mm 的高度使之可放置到非常靠近负载 (FPGA 或 ASIC) 的地方,从而共用一个散热器。其 PMBus 接口使用户能改变主要的电源参数。