开关模式电源的建模和环路补偿设计

用 R1、R2、C1 和 C2 设计反馈分压器网络 Kref(s)

在图 16 中,DC 增益 KREF 的 Kref(s) 是内部基准电压 VREF 和想要的 DC 输出电压 Vo 之比。电阻器 R1 和 R2 用来设定想要的输出 DC 电压。

 

28.jpg

其中

 

29.jpg

可以增加可选电容器 C2,以改进反馈环路的动态响应。从概念上来说,在高频时,C2 为输出 AC 电压信号提供低阻抗前馈通路,因此,加速了瞬态响应。但是 C2 还有可能给控制环路带来不想要的开关噪声。因此,可以增加一个可选 C1 滤波器电容器,以衰减开关噪声。如等式 11 所示,包括 C1 和 C2 的总体电阻器分压器转移函数 KREF(s) 有一个零点和一个极点。图 22 显示了 KREF(s) 的波德图。通过设计成 fz_ref < fp_ref,C1 和 C2 与 R1 和 R2 一起,导致在以 fCENTER 为中心的频带中相位增大,相位增大量在等式 14 中给出。如果 fCENTER 放置在目标交叉频率 fC 处,那么 Kref(s) 使相位超前于电压环路,提高了相位裕度。另一方面,图 22 还显示,C1 和 C2 提高了高频时的分压器增益。这种情况是不想要的,因为高频增益提高使控制环路对开关噪声更加敏感。C1 和 C2 导致的高频增益提高在等式 15 中给出。

 

30.jpg

 

 

图 22:电阻器分压器增益 KREF(s) 的转移函数波德图

图 22:电阻器分压器增益 KREF(s) 的转移函数波德图

就给定的 C1 和 C2 而言,分压器网络导致的相位增大量 φREF 可以用等式 16 计算。此外,在 C2 >> C1 的情况下,就给定输出电压而言,最大相位增大量由等式 17 给出。从该等式中也可以看出,最大相位增大量 φREF_max 由分压比 KREF = VREF/VO 决定。既然 VREF 就给定控制器而言是固定的,那么用更高的输出电压 VO 可以得到更大的相位增大量。

 

32.jpg

 

选择φREF、C1 和 C2 时,需要在想要的相位增大量与不想要的高频增益提高量之间做出权衡。之后,需要检查总体环路增益以实现最佳值。

设计电压环路 ITH 误差放大器的 II 型补偿网络

ITH 补偿 A(s) 是环路补偿设计中最关键的一步,因为这一步决定 DC 增益、交叉频率 (带宽) 和电源电压环路的相位 / 增益裕度。就一个电流源输出、gm 跨导型放大器而言,其转移函数 A(s) 由等式 18 给出:

 

33.jpg

其中,gm 是跨导误差放大器的增益。Zith(s) 是放大器输出 ITH 引脚上补偿网络的阻抗。

从图 21 所示的控制方框图中可以看出,电压环路调节误差可由以下等式量化:

 

34.jpg

因此,为了最大限度降低 DC 调节误差,大的 DC 增益 A(s) 是非常想要的。为了最大限度提高 DC 增益 A(s),首先要将电容器 Cth 放在放大器输出 ITH 引脚处以形成一个积分器。在这种情况下,A(s) 传输增益为:

 

图 22:电阻器分压器增益 KREF(s) 的转移函数波德图

图 23 显示了 A(s) 的原理图及其波德图。如图所示,电容器 Cth 以无限高的 DC增益在 A(s) 中产生了一个积分项。不幸的是,除了初始的 –180° 负反馈,Cth 又增加了 –90° 的相位滞后。将一阶系统功率级 GCV(s) 的 –90° 相位包括进来以后,在交叉频率 fC 处的总体电压环路相位接近 –360°,该环路接近不稳定状态。

实际上,电流源 gm 放大器的输出阻抗不是一个无限大的值。在图 24 中,Ro 是 gm 放大器 ITH 引脚的内部输出阻抗。凌力尔特公司控制器的 Ro 通常较高,在 500kΩ 至 1MΩ 范围。因此,单个电容器的 A(s) 转移函数变成了等式 21。该转移函数有一个低频极点 fpo (由 RO · Cth 决定)。因此 A(s) 的 DC 增益实际上是 gm · RO。如图 24 所示,在预期的交叉频率 fc_exp 处,A(s) 仍然有 –90° 的相位滞后。

ADI 技术视频more

LT3094: 在 1MHz 具 0.8μV<sub>RMS</sub> 噪声的负 LDO

LT3094: 在 1MHz 具 0.8μVRMS 噪声的负 LDO

LT3094 是一款高性能低压差负线性稳压器,其具有 ADI 的超低噪声和超高 PSRR 架构,适合为噪声敏感型应用供电。该器件可通过并联以增加输出电流和在 PCB 上散播热量。

观看此技术视频
LTM8002:高效率、超低 EMI 降压型电源 μModule

LTM8002:高效率、超低 EMI 降压型电源 μModule

LTM8002 是一款 40VIN、2.5A 降压型μModule® 稳压器。它内置了开关控制器、电源开关、电感器和所有的支持性组件。该器件支持 3.4V 至 40V 的输入电压范围,和 0.97V 至 18V 的输出电压。

观看此技术视频
具电源系统管理功能的超薄型 μModule 稳压器

具电源系统管理功能的超薄型 μModule 稳压器

LTM4686 是一款双通道 10A 或单通道 20A 超薄型降压 μModule 稳压器。该器件1.82mm 的高度使之可放置到非常靠近负载 (FPGA 或 ASIC) 的地方,从而共用一个散热器。其 PMBus 接口使用户能改变主要的电源参数。

观看此技术视频

电源管理杂志more

Journal of Power Management (2018 年 8 月刊) 英文版

Journal of Power Management (2018 年 8 月刊) 英文版

Journal of Power Management (2018 年 4 月刊) 英文版

Journal of Power Management (2018 年 4 月刊) 英文版

Journal of Power Management (2018 年 1 月刊) 英文版

Journal of Power Management (2018 年 1 月刊) 英文版

关闭ADI官方微信二维码