高速峰值检波器

引言

峰值检波器在其输入端上捕捉电压信号的极值。正峰值检波器捕捉输入信号的最正点,而负峰值检测则捕捉输入信号的最负点。理想的情况下,峰值检波器电路的输出跟踪或追随输入电压,直至达到极值点为止 (但是当输入减小时保持该值)。理想峰值检波器可不受输入信号速度的影响执行该功能。实际峰值检波器的性能受限于输入信号的带宽。本文将回顾传统有源峰值检波器电路的工作原理,着重阐述限制带宽的参数和组件;提出消除这些局限性的改进措施并给出比较新电路之性能的仿真结果。

传统的峰值检波器

图 1 和图 2 描绘了两款峰值检波器实施方案。图 1 中的电路是传统的峰值检波器。图 2 中的电路则解决了传统峰值检波器的局限性。该讨论将回顾传统峰值检波器的工作原理,重点阐述电路的局限性,说明改进型电路怎样克服了这些局限性,并探讨进一步改善电路的方法 (如图 3 所示)。

1.jpg

图 1:传统的峰值检波器

图 1 中的电路用于捕捉输入电压 (IN) 的峰值。当 IN 为正时,D1 为反向偏置,D2 为正向偏置,而且在反馈电阻器 R2 中没有电流流动。于是,输出电压 (OUT) 跟踪输入电压 (IN),因为外面的反馈环路把 U1 的输入驱动至虚短路 (V+ = V-)。由于 U2 被配置为一个电压跟随器,因此输出电压跟踪电容器 C1 上的电压。C1 由 U1 的输出电流通过 D2 充电至该电压。R1 负责防止 U1 超过其短路输出电流,并把 U1 与 C1 的电容相隔离,从而避免发生振铃或甚至振荡。只要输入电压为正和不断地增大,这种状态就会保持。

当输入电压减小时,图 1 中的电路改变状态。D2 在输入电压减小时为反向偏置,因为 U1的输出 (D2 的正极) 降至低于 D2 的负极电压 (它等于存储在 C1 上的前一个峰值电压)。在该状态中外面的反馈环路断裂,而且 U1 的输出试图对齐到负轨电压。D1 在该状态中为正向偏置,并提供至 U1 的局部反馈,U1 把 D2 的正极箝位在比输入电压低一个二极管压降。这种保持状态将维持到输入电压超过电容器电压 (其等于输出电压) 为止。D1 箝位缩短了从保持状态返回跟踪状态的转换时间。

速度是图 1 所示传统峰值检波器电路的主要局限。输出电压的变化速度不能快于 C1 的充电速度。C1 的充电速度受限于 U1 的短路输出电流、D2 的正向电压降、D2 的换向速度以及由 R1 和 C1 形成之时间常数的指数上升。

改进型峰值检波器

图 2 所示电路的速度和误差指标好于图 1 中的电路。这些改进是克服了传统峰值检波器某些局限性的结果。请注意,整流二极管变更为肖特基势垒型。这种改变减小了正向电压降,从而增大了流过 C1 的初始充电电流。此外,肖特基二极管较快的恢复时间还加快了从跟踪状态至保持状态的转换速度。而且,肖特基二极管较低的反向恢复电荷减少了 C1 上的消隐脉冲电平误差。

虽然肖特二极管上的电压降较低,但是它直接转化为输出,因为没有外面的反馈环路对它实施补偿,而图 1 所示的传统电路中有这样的环路。该电路通过利用 U1 的局部反馈环路中的一个匹配肖特基二极管对它进行平衡以补偿该二极管压降。如果对匹配的二极管施加了相似的偏置,则两个二极管的压降将大部分抵消。R2 设定 D1 中的偏置电流,这将使得 D1 的压降能够抵消 D2 的压降,并最大限度地减小该误差。

R5 和 R6 形成了一个降低输入电压之电平的阻性分压器。D3 把输入电压箝位在比 0V 低一个二极管压降,这就让出了负电源轨的 U1 和 U2。

2.jpg

图 2:改进型峰值检波器

LTC®6244 是一款双路高速、单位增益稳定的 CMOS 运算放大器,具有 50MHz 的增益带宽、 40V/µs 的转换速率、1pA 的输入偏置电流、低输入电容和轨至轨输出摆幅。0.1Hz 至 10Hz 噪声仅为 1.5µVP-P,而且,1kHz 噪声保证低于 12nV/√Hz。这种卓越的 AC 和噪声性能与宽电源操作范围、仅 100µV 的最大失调电压以及仅 2.5µV/ºC 的失调漂移相结合,使其适合在该应用中使用。

电流提升的改进型峰值检波器

图 3 中的电路利用了图 2 所示改进型峰值检波器的方法,并增设了一个电流提升器以增加 C1 的充电电流。电流提升的峰值检波器用匹配的 NPN双极结型晶体管 (BJT) 取代了匹配二极管。该电路的工作方式与图 2 中的电路完全相同,但是它对 C1 充电的速度则大幅度地加快了。

3.jpg

图 3:电流提升的改进型峰值检波器

该拓扑给肖特基二极管方法提供了一些替代方案。C1 充电电流增大的倍数等于共集电极 BJT 配置的电流增益。此外,该拓扑还给 C1 提出了一个较低的源阻抗。R3 不再需要,因为发射极跟随器具有大于 U2 的电流供应能力。因此,充电时间常数几乎被免除了。图 3 中电路的速度受限于 U2 的带宽和发射极跟随器的单位增益频率 (fT) 当中较小的那个。Q1 的基极-发射机结的电压降可采用与图 2 中 D2 和 D3 平衡相同的方式由 Q2 的基极-发射极结抵消。

两个高速峰值检波器的性能比较 (图 4) 显示:两款电路在 60kHz 频率条件下的表现同样优秀,而图 5 则表明电流提升改进方案增加了带宽。

4.jpg

5.jpg

结论

图 3 所示电流提升型峰值检波器的改进并非没有代价。然而,对于那些速度和精度十分要紧的应用来说,为了实现这些电路改进而增加功率耗散、组件数目和复杂性可能是很值得的。

软件

LTspiceIV

LTspice IV 是一款功能强大、快速和免费的仿真工具、电路图捕获和波形观测器,为改善开关稳压器的仿真提供了改进和模型。点击这里下载 LTspice IV

如需启动用于该器件的随时可运行 LTspice 演示电路,可按照下列步骤操作:

· 第一步:如果您的电脑尚未安装 LTspice,则请下载并安装 LTspice IV

· 第二步:安装 LTspice 之后,单击下面的链接以启动仿真

  · LTC6244 Demo Circuit - 60kHz, Positive and Negative Peak Detector

  · LTC6244 Demo Circuit - Classic Peak Detector Example

  · LTC6244 Demo Circuit - Improved Peak Detector Example

  · LTC6244 Demo Circuit - Improved Peak Detector with Current Boost Example

· 第三步:如果在单击上面的链接之后LTspice IV未能自动打开,您可以在该链接上单击右键并选择 “另存为 (Save Target As)”。把文档保存到您的电脑之后, 通过从 “文档 (File)” 菜单选择 “打开 (Open)” 来起动 LTspice 并打开演示电路

如需研究其他随时可运行的 LTspice 演示电路,敬请访问我们的演示电路结集

ADI 技术视频more

LT3094: 在 1MHz 具 0.8μV<sub>RMS</sub> 噪声的负 LDO

LT3094: 在 1MHz 具 0.8μVRMS 噪声的负 LDO

LT3094 是一款高性能低压差负线性稳压器,其具有 ADI 的超低噪声和超高 PSRR 架构,适合为噪声敏感型应用供电。该器件可通过并联以增加输出电流和在 PCB 上散播热量。

观看此技术视频
LTM8002:高效率、超低 EMI 降压型电源 μModule

LTM8002:高效率、超低 EMI 降压型电源 μModule

LTM8002 是一款 40VIN、2.5A 降压型μModule® 稳压器。它内置了开关控制器、电源开关、电感器和所有的支持性组件。该器件支持 3.4V 至 40V 的输入电压范围,和 0.97V 至 18V 的输出电压。

观看此技术视频
具电源系统管理功能的超薄型 μModule 稳压器

具电源系统管理功能的超薄型 μModule 稳压器

LTM4686 是一款双通道 10A 或单通道 20A 超薄型降压 μModule 稳压器。该器件1.82mm 的高度使之可放置到非常靠近负载 (FPGA 或 ASIC) 的地方,从而共用一个散热器。其 PMBus 接口使用户能改变主要的电源参数。

观看此技术视频

电源管理杂志more

Journal of Power Management (2018 年 8 月刊) 英文版

Journal of Power Management (2018 年 8 月刊) 英文版

Journal of Power Management (2018 年 4 月刊) 英文版

Journal of Power Management (2018 年 4 月刊) 英文版

Journal of Power Management (2018 年 1 月刊) 英文版

Journal of Power Management (2018 年 1 月刊) 英文版

关闭ADI官方微信二维码