电池 SoC 状态检测有新招 超声能确定?
对于锂离子电池管理系统 BMS 非常重要的一个功能就是对电池的 SoC 状态进行预测,SoC 既电池的荷电状态,state ofcharge 的缩写,电池的 SoC 对于电池的管理十分重要,可以指导电池的充放电,防止发生过充过放,延缓电池的衰降。但是对于锂离子电池而言,电池的 SoC 状态并不是与电压呈现简单的线性关系,这就为电池 SoC 的预测制造了重重的阻碍。一般而言,电池的电压与电池的 SoC,工作电流和温度等因素密切相关,因此为了提高预测的准确度,往往需要复杂的模型。目前比较常见的模型一般分为两大类:1)等效电路模型,这种模型一般是根据电池的测量结果,将电池等效成为一个由电阻、电容等多种电子元器件组成的电路,并根据该模型进行推导计算,从而实现对电池的 SoC 的预测;2)电化学模型,这种模型更多的是关注锂离子电池内在的反应机理,通过数学模型对电池的正极、负极、界面膜和电解液等组分进行建模,模拟它们在充放电过程中的行为特点,从而实现对锂离子电池的 SoC 的预测。
上面这些 SoC 预测方法都是基于我们常见的电压和电流、温度等参数,通过间接的方法推导锂离子电池的 SoC 状态,由于电池模型误差的存在,因此难以对电池的 SoC 状态进行高精度的预测。来自德国 Fraunhofer 硅酸盐研究所的 Lukas Gold 等人提出了一种利用超声波检测的手段确定锂离子电池 SoC 状态的方法。为了便于理解 Lukas Gold 提出的方法的工作原理,我们需要简单介绍一下锂离子电池的反应原理,在锂离子电池充电的过程中,Li+ 首先从正极脱出,扩散负极表面,然后嵌入到石墨负极的晶格内部,随着 Li+ 的嵌入,石墨颗粒会发生一定程度的体积膨胀,导致负极极片的孔隙率发生变化,而超声波对于孔隙率的变化十分敏感,因此也就能够高灵敏的检测电池的 SoC 状态。
为了研究负极对超声波的反馈,LukasGold 假设负极结构中所有的空隙都填满了电解液,并根据 Biot 的“弹性波在液体填充的多孔固体中的传播理论”建立了理论模型。为了验证这一理论的准确性,Lukas Gold 采用方形 1.2Ah 电池进行了验证。试验中选用了 RCN 脉冲作为超声波源,试验原理如下图所示:
通过对完全充电和放电的电池施加一个频率为 200KHz 的脉冲超声波,我们得到了两个反馈波,如下图所示。从图上可以看到,反馈声波分为两个脉冲,其中第一个脉冲与电池的 SoC 状态无关,而第二个脉冲则与电池的 SoC 状态有密切的关系,完全放电 (SoC=0%) 状态下第二个脉冲明显要弱很多,而完全充电状态 (SoC=100%) 第二个脉冲波的强度要明显高于放电状态的反馈信号。为了方便对于超声波反馈数据的处理,Lukas Gold 还对反馈超声数据进行了平滑处理,如下图中的第二幅图所示。
Lukas Gold 还测试不同的 SoC 状态下电池的超声波反馈信号,如下图所示。从图中可以主要到,用红线表示出来的第二个反馈脉冲波的峰高和延迟时间都与电池的 SoC 状态呈现出很强的相关性。随着电池 SoC 的增高,第二个反馈脉冲的峰强逐渐增强,延迟时间逐渐变短。
Lukas Gold 还将电池以 2C 倍率充电到 100%SoC,静置 30min 后 4C 放电到 0%SoC 状态,期间每隔 20%SoC 利用超声波进行一次检测,第二个反馈脉冲波的峰高变化规律如下图所示,从图上可以看到相同 SoC 状态下,充电过程中测的的第二个反馈峰的高度要明显高于在放电过程中测得的结果。通过线性拟合对测试数据进行分析,对于充电过程,通过超声波检测预测的 SoC 误差仅为 3.5%,而放电过程中误差则达到了 11%,因此这表明线性拟合并不适合放电过程,目前 Lukas Gold 还在寻找更加合适的拟合方法。
Lukas Gold 的工作为高精度的 SoC 预测提供了一个新的思路,本篇中主要介绍了超声波检测方法的基本原理和试验结果,接下来的内容,我们将介绍该方法的数学模型。
为了便于分析,Lukas Gold 假设电池负极的极片的空隙中都充满了电解液,这基本上符合锂离子电池负极结构的实际情况。根据这一假设,我们可以利用 Biot 的“弹性波在液体填充的多空固体中的传播理论”对其进行理论分析。
在充电的过程中,随着 Li+ 不断的嵌入负极,石墨颗粒体积也在不断的发生膨胀,这就引起了负极极片孔隙率逐渐降低,引起负极的参数变化,石墨负极的参数如下表所示,从该表中我们可以看到快波和慢波在石墨负极中的传播速度分别是 V1=3220m/s 和 V2=460m/s,理论分析表明,V1 和 V2 分别是负极极片孔隙率的函数,计算表明 V1 几乎是一个常数,受极片孔隙率变化的影响非常小,极片的空隙率从 15% 增加到 40%,V1 仅从 3220m/s 下降到 3098m/s,这与试验结果相一致。
而慢波速度 V2 则与电极孔隙率的关系非常大,V2 随电极孔隙率的变化如下图所示,鉴于石墨负极在完全不嵌锂的状态下,典型的空隙率为 30% 左右,因此空隙率的范围设定为 10%-40%。从下图中可以看到,随着负极极片的空隙率的降低,V2 的速度快速增加。
声波的波长可以用 λ=c/? 计算,其中 λ 为波长,c 为声速,? 为频率。对于 200KHz 的超声波,快波的波长要超过 20mm,而在电池的不同 SoC 状态下,慢波的波长可以从 0.59-0.73mm 之间变化,由于快波的波长较长,锂离子电池的结构基本上不会对其传播造成显著的影响。但是由于慢波的速率与电极层的厚度十分接近,因此会导致声波波长变化的因素都会导致慢波传播行为的改变,从上式中我们可以看到引起声波波长变化的因素主要有频率和传播速度,其中频率是我们施加给电池的,不受电池因素的影响。而声波的传播速度,是受到锂离子电池电极参数(孔隙率)的影响。超声波频率和电极参数改变,导致慢波反馈信号改变的趋势如下图所示。从图上我们可以注意到一旦超声波的波长的数量级与电极层厚度接近,声波在电池内传播的衰减就会迅速增加,因此通过优化超声波的频率可以显著的提高超声探测的灵敏度。由于在充电和放电过程中,声波在负极材料中的传播速度呈现出线性变化,因此慢波反馈信号的高度也呈现出线性变化的趋势。
Lukas Gold 的工作为锂离子电池 SoC 的预测提供了一种全新的思路,该方法不依赖于点测量,而是依靠超声波探测负极结构变化,计算出负极的嵌锂状态,进而获得电池 SoC。该方法简单直接,精度高 (充电过程误差仅有 3.5%,大倍率放电误差稍大,还需要进一步探索),不需要对锂离子电池进行建模,极大的降低了 SoC 预测的难度,是一种十分具有潜力的方法。
新品more
ADI 技术视频more
LT3094: 在 1MHz 具 0.8μVRMS 噪声的负 LDO
LT3094 是一款高性能低压差负线性稳压器,其具有 ADI 的超低噪声和超高 PSRR 架构,适合为噪声敏感型应用供电。该器件可通过并联以增加输出电流和在 PCB 上散播热量。
LTM8002:高效率、超低 EMI 降压型电源 μModule
LTM8002 是一款 40VIN、2.5A 降压型μModule® 稳压器。它内置了开关控制器、电源开关、电感器和所有的支持性组件。该器件支持 3.4V 至 40V 的输入电压范围,和 0.97V 至 18V 的输出电压。
具电源系统管理功能的超薄型 μModule 稳压器
LTM4686 是一款双通道 10A 或单通道 20A 超薄型降压 μModule 稳压器。该器件1.82mm 的高度使之可放置到非常靠近负载 (FPGA 或 ASIC) 的地方,从而共用一个散热器。其 PMBus 接口使用户能改变主要的电源参数。