可燃冰试采成功 可否补齐燃料电池制氢短板?

我国首次海域天然气水合物(俗称“可燃冰”)试采满月了,来自中国地质调查局海域可燃冰试采平台的信息显示,截至 6 月 10 日 14 时 52 分,此次试采已连续产气 31 天,总产气量 21 万立方米,平均日产 6,800 立方米。

石油对外依存度长期居高不下是我国发展新能源汽车的重要因素之一。我国成功试采可燃冰,让人们看到了能源安全威胁得到缓解的一丝曙光。在汽车行业,可燃冰带来的话题效应也在持续发酵。其中之一,便是可燃冰实现商业化开采后,是否能解决燃料电池汽车制氢短板。

1498014033992635.jpg

■“应用前景应该比照天然气”

中石油经济技术研究院副院长刘朝全在《2016 年国内外油气行业发展报告》发布会上曾表示,2016 年我国原油对外依存度上升至 65.5%,2020 年前可能超过 70%,对我国能源安全构成很大威胁。不仅如此,据了解,中国每年还要进口大量的天然气满足国内需求。国务院发展研究中心研究员郭焦峰告诉记者,这个数字达到 300 亿立方米。

可燃冰试采成功“燃”起了希望。作为一种由水分子和气体分子组成的类冰状笼形包合物,其外形酷似冰,能像固体酒精一样被直接点燃,人类还可以从中分离出甲烷。我国已探明的可燃冰储量按当前的消耗水平,可满足近 200 年的能源需求。

厦门大学中国能源政策研究院院长林伯强告诉记者,可燃冰的成份与天然气一样,应用前景应该比照天然气。

天然气的价格比较便宜,在居民生活、发电供暖、化工及汽车燃料等方面都有较广泛的用途。郭焦峰说:“天然气是一种洁净环保的优质能源,几乎不含硫、粉尘和其他有害物质,燃烧时产生的二氧化碳少于其他化石燃料。国产天然气价格大约 1 元/立方米(坑口价格),进口天然气的价格分为两种,现货价格大约 1.5 元/立方米,长期协议价格大约 2 元/立方米。”

不过,我国可燃冰目前仅仅试采成功,离商业化开采还有较长的距离。林伯强认为,可燃冰实现商业化开采还需要 10~20 年,郭焦峰的观点是需要 10~15 年。“汽车产业是能源消耗大户,现在离可燃冰商业化开采还有一定时间,应加强汽车使用可燃冰的研究,迎接可燃冰的大规模应用。可燃冰的开采成本低于 2 元/立方米,就将有商业价值。”郭焦峰对记者说。

■制氢是燃料电池短板之一

燃料电池汽车有诸多的优点,是新能源汽车发展的终极目标。同济大学张智明博士告诉记者,到目前为止,还没有哪一项能源生成技术像燃料电池那样将诸多优点集于一身。

能效是衡量车辆能源利用率的重要指标,燃料电池的能效比较高。燃料电池将化学能直接转换为电能,不像传统汽车的发动机燃烧产生大量废气与废热。目前,直接使用氢气的系统效率超过 50%,如果将燃料电池排放的废热加以回收利用,能量利用率超过 85%。

此外,燃料电池还具有环境亲和性。部分燃料电池会排放二氧化碳,但远低于燃烧汽油的排放量 (约为其 1/6)。氢燃料电池尾气排放只有水,可真正做到无污染,无温室气体排放。燃料电池还有无火花、低噪声、无废弃物处理问题、高机动性等特点。

燃料电池汽车的前景十分美好,但全球仅有微不足道的几千辆车辆运行,催化剂、隔膜、储氢、系统复杂性和制氢5大难点制约了其商业应用。正如传统汽车使用汽柴油一样,驱动燃料电池的氢气来源是绕不过去的坎,成为制约燃料电池发展的短板之一。

■可燃冰制氢有工业化生产优势

目前,氢气的来源主要有化工尾气回收、天然气制氢、甲醇制氢和电解水制氢等几种方式。“每一种制氢方法都有自己的应用场景,需要根据生产特点及用途,采用适当的制氢方式。”四川亚联高科技股份有限公司董事长王业勤向记者表示。气体设备网技术顾问张强的观点是:“主要根据气量大小、纯度要求以及氢气的使用频率选择制氢方法。”

以往在化工行业,氢气往往作为副产品排放到大气中,从化工尾气中回收氢气的成本理应比较低,事实却并非完全如此。王业勤说:“从焦炉气中回收氢气的成本大约为 0.6 元/立方米,相对比较便宜。但是,从氯碱化工中回收氢气就会超过 1 元/立方米。”

化工尾气中回收氢气数量有限,无法满足汽车产业的大规模需求。另外,燃料电池对氢气的纯度要求达到 99.9% 以上,否则催化剂容易“中毒”失去效能,化工尾气中回收氢气的提纯成本不可忽视。张强表示:“纯度为 60%~80% 的氢气,习惯上称之为化工氢。化工氢需要提纯,提纯成本与气体厂采用的工艺有直接关系,最后的销售价格大约为 1.7 元/立方米,如果不是大规模采购,价格会超过 2.7 元/立方米。”

甲醇燃料电池(DMFC)不需要通过加氢站补充氢气,车载的甲醇分解出氢气提供动力,不过,这种燃料电池汽车没有成为主流产品。“甲醇的最大用途是生产聚丙烯,用于制氢的甲醇数量占比很小。有些地方还用天然气制造甲醇。”王业勤说。张强告诉《中国汽车报》记者,甲醇制氢的成本大约为 1.8~2 元/立方米。

电解水制氢在业内被广泛关注。许多人焦虑石油资源枯竭,地球上水资源丰富,电解水制氢不容易产生这种隐忧。另外,电解水制氢只有一步,直接可得到纯度高达99.999%的氢气。

然而,电解水制氢的成本比较高,制约了大规模推广应用。张强告诉记者,一立方米氢气大约需要 4.8 度电,成本超过 3 元/立方米。电解水制氢还有一个问题不能忽视,随着时间推移,电解池的电阻会升高,电解氢的耗电量会增加,导致成本上升。电解池的电极大约 3~5 年需更换一次,费用不低。

随着天然气的普及,天然气制氢成为一个发展方向。王业勤称:“天然气制氢的成本相对来说比较低,大约为天然气价格除以 2、再乘上 1.2~1.3 的系数。”

张强告诉记者,天然气制氢的价格一般低于 1.5 元/立方米(纯度为 99.9%),适合大规模工业化制氢,不过,生产工艺较长,有四个步骤,脱硫、分解、增压、纯化。

一些业内人士指出,可燃冰试采成功后,人们逐渐认识其经济价值及应用前景,未来商业化开采后或补齐燃料电池制氢短板。

ADI 技术视频more

LT3094: 在 1MHz 具 0.8μV<sub>RMS</sub> 噪声的负 LDO

LT3094: 在 1MHz 具 0.8μVRMS 噪声的负 LDO

LT3094 是一款高性能低压差负线性稳压器,其具有 ADI 的超低噪声和超高 PSRR 架构,适合为噪声敏感型应用供电。该器件可通过并联以增加输出电流和在 PCB 上散播热量。

观看此技术视频
LTM8002:高效率、超低 EMI 降压型电源 μModule

LTM8002:高效率、超低 EMI 降压型电源 μModule

LTM8002 是一款 40VIN、2.5A 降压型μModule® 稳压器。它内置了开关控制器、电源开关、电感器和所有的支持性组件。该器件支持 3.4V 至 40V 的输入电压范围,和 0.97V 至 18V 的输出电压。

观看此技术视频
具电源系统管理功能的超薄型 μModule 稳压器

具电源系统管理功能的超薄型 μModule 稳压器

LTM4686 是一款双通道 10A 或单通道 20A 超薄型降压 μModule 稳压器。该器件1.82mm 的高度使之可放置到非常靠近负载 (FPGA 或 ASIC) 的地方,从而共用一个散热器。其 PMBus 接口使用户能改变主要的电源参数。

观看此技术视频

电源管理杂志more

Journal of Power Management (2018 年 8 月刊) 英文版

Journal of Power Management (2018 年 8 月刊) 英文版

Journal of Power Management (2018 年 4 月刊) 英文版

Journal of Power Management (2018 年 4 月刊) 英文版

Journal of Power Management (2018 年 1 月刊) 英文版

Journal of Power Management (2018 年 1 月刊) 英文版

关闭ADI官方微信二维码