DC/DC转换器是开关电源芯片,指利用电容、电感的储能的特性,通过可控开关(MOSFET等)进行高频开关的动作,将输入的电能储存在电容(感)里,当开关断开时,电能再释放给负载,提供能量。
供暖、通风和空调 (HVAC) 系统使用传感器来调节机电设备的运行。运行该设备通常消耗的能量占每月电费的很大一部分。当室外温度低于室温时,供暖负荷就会增加。相反,当室外温度高于室温时,冷负荷就会增加。
在现代电子设备中,反激电源因其结构简单、成本低廉和易于设计等优点而被广泛应用。然而,反激电源在工作过程中会产生大量的电磁干扰(EMI),这不仅会影响设备自身的性能,还可能对周围的电子设备造成干扰,甚至破坏。因此,如何有效抑制反激电源的EMI,成为了电子工程师们亟待解决的重要课题。
本系列关于低 EMI 印刷电路板设计的第 3 部分讨论了分区,以及为什么在电路板介电空间内防止“嘈杂”信号场交叉耦合到“安静”信号场很重要。在本文中,我将提供有关分区的更多详细信息。虽然分区的概念很简单,但真正的主板通常需要更多的思考。
本系列的第 1 部分介绍了数字信号如何通过 PC 板传播,第 2 部分介绍了实现低 EMI 的特定板层叠设计。第 3 部分将讨论电路部分的分区、高速走线的布线以及其他一些有助于降低 EMI 的布局实践。
本系列的第 1 部分描述了数字信号如何通过 PCB 板传播。 1、2、5、6]。在第 2 部分中,我们将研究实现低 EMI 的特定电路板设计。我在客户的电路板设计中看到的最大问题是层堆叠不良。
在帮助客户使其产品符合 EMI 要求后,我发现了一个根本问题:印刷电路板设计不佳。根据我的经验,物联网产品设计人员会遇到因印刷电路板设计不良而导致的问题。当板载能源破坏敏感的接收器电路时,不良的设计可能会导致无限的延迟,从而导致蜂窝合规性失败。 GPS 和 Wi-Fi 接收器也会失去灵敏度。
随着电子设备对在更小的封装中进行更多处理的需求不断增长,当今任何电源的首要任务都是功率密度。最流行的隔离式电源拓扑是反激式,但传统反激式的漏电和开关损耗限制了开关频率并阻碍了实现小解决方案尺寸的能力。幸运的是,有新的方法可以优化反激式拓扑,以产生更高的效率,即使以更高的频率进行开关也是如此。
单元测试是防止错误的第一道防线。这种级别的保护至关重要,因为它为以下测试过程奠定了基础:集成测试、验收测试以及最后的手动测试,包括探索性测试。
在电源转换器中,输入电容器通过感应电缆馈送到电源。首次插入系统时,寄生电感会导致输入电压的振铃几乎达到其直流值的两倍(也称为热插拔)。电源转换器输入阻尼不足和缺乏浪涌控制可能会损坏转换器。
纹波噪声是指在电力电子设备中由于开关器件的开关动作和电容、电感能量的周期性存放释放导致交流电流和电压的变化而产生的波动,也称为交流噪声。
这不是直接耦合对应部分的情况(图 2)。它的下限截止频率不受输出的限制,因此前级的任何波动都会引起DC值波动,从而导致有直流电流流过负载(扬声器)。除了降低放大器的动态范围和 THD 之外,这也是为什么有时我们在打开或关闭分立音频放大器时会听到“咔哒”噪音的原因。
TMR 技术代表了磁传感领域的范式转变。传统的霍尔效应传感器依赖于外部磁场影响下电荷载流子的偏转,而 TMR 传感器则不同,它利用了隧道磁阻现象。这涉及通过夹在两个铁磁层之间的薄绝缘层测量电阻的变化,其中电阻由外部磁场调制。这种根本差异转化为 TMR 传感器的几个关键优势:
传统上,自动化测试分为单元测试、集成测试和端到端测试。这种分类是基于测试的范围,尽管不同类型之间的区别并不总是很清楚。单元测试的范围很窄,通常测试单个方法或类。集成测试验证不同组件之间的交互。端到端测试通常在平台或 Web 应用程序上执行完整的用户流程,涉及多个不同的系统。
与传统PWM(脉宽调节)变换器不同,LLC是一种通过控制开关频率(频率调节)来实现输出电压恒定的谐振电路。它的优点是:实现原边两个主MOS开关的零电压开通(ZVS)和副边整流二极管的零电流关断(ZCS),通过软开关技术,可以降低电源的开关损耗,提高功率变换器的效率和功率密度。