当前位置:首页 > 工业控制 > 工业控制
[导读]0 引 言 水下导航系统,其工作环境位于水下,不利于实现人为的控制,而且卫星信号在水下和地下往往无法接收到,且易受干扰,所以人和卫星信号都无法实现对其定位定向的要求。惯性导航这种自主式导航系统可以实现

0 引 言
    水下导航系统,其工作环境位于水下,不利于实现人为的控制,而且卫星信号在水下和地下往往无法接收到,且易受干扰,所以人和卫星信号都无法实现对其定位定向的要求。惯性导航这种自主式导航系统可以实现对轮式水下采矿车的定位定向。
    惯性导航系统(Inertial Navigation System,INS)是一种既不依赖外部信息、又不发射能量的自主式导航系统,隐蔽性好,不怕干扰。惯性导航系统所提供的导航数据又十分完整,它除能提供载体的位置和速度外,还能给出航向和姿态角,而且又具有数据更新率高,短期精度和稳定性好的优点。然而惯性导航系统并非十全十美,从初始对准开始,其导航误差就随时间而增长,尤其是位置误差,这是惯导系统的主要缺点。所以需要利用外部信息进行辅助,实现组合导航,使其有效地减小误差随时间积累的问题。里程计(Odometer,OD)是测量车辆行使速度和路程的装置,高分辨率的里程计可以精确测量车辆行驶的速度和路程,可以从捷联惯导中获得姿态和航向信息,进行定位解算,而且随时间累积的定位误差较小,可作为SINS的参考信息。所以建立以SINS为主,里程计为辅加以卡尔曼滤波的水下组合导航系统,该组合模式工作能有效利用各自的优点,在低成本的情况下实现高精度的惯导组合系统。


l SINS/OD水下组合导航系统模型的建立
1.1 里程计的误差分析
    设采矿车的行使速度为vD,它指向载车的正前方,写成矢量形式为:

其中:vbE,vbN和vbU分别为vD在东北天方向的分量。因此采矿车的速度在n系的表达形式为:

其中:Cnb为捷联姿态矩阵。
    先来分析定位误差:
    里程仪的位置方程:

其中:地球表面上的任一点处沿子午圈的主曲率半径为:RM△Re(1—2e+3esin2L);地球表面上的任一点处沿卯酉圈的主曲率半径为:RN△Re(1+esin2L);L为地理纬度;λ为地理经度;h为高度。设里程仪的位置更新周期为Tj=tj-tj-1,并假设里程仪速度vD和捷联姿态矩阵Cnb在[tj-1,tj]内可采样N次(即vnD可采样N次),则:

那么,由里程仪位置微分方程可直接写出位置误差方程:

其中:δLD为纬度误差;δλD为经度误差;δhD为高度误差。
    接着分析里程计的速度误差:


  

1.2 系统的状态方程
    本系统取东北天坐标系为导航坐标系,以SINS导航参数误差作为系统状态变量X。
    系统的状态方程为:

δKD]T,ψ为姿态误差角,δvn为系统速度误差,δp为位置误差,δKG为陀螺仪刻度系数误差,εb为东北天向陀螺零漂,δKA为加速度计刻度系数误差,△b为东北天向的加速度计的零偏,δpD为里程计的位置误差,δKD为里程计的刻度系数误差。F(t)为系统状态变量的系数矩阵。G(t)为系统噪声系数矩阵,w(t)为系统噪声矩阵,它是均值为零、方差为Q的白噪声矢量。
1.3 观测方程的建立
    SINS与里程计的自主式组合导航系统采用速度组合方式时,里程计的速度量测值经过刻度系数误差及姿态误差角修正后分解到导航坐标系,与SINS的速度量测值进行对比,构成卡尔曼滤波器的观测量,利用卡尔曼滤波技术进行误差估计和校正,具体的系统量测方程为:

式中:v(t)为量测噪声矢量,它是均值为零、方差为R的白噪声矢量,且假设v(t)和w(t)是互不相关的。


2 实物试验的结果及分析
    水下试验使用的是装有组合导航系统并且顶部带有标杆的导航试验车。环境是一个200 m2的水池,试验车全程约20 min,速度约为0.1 m/s,以水池东向位置的中心为起点,以东向位置为基准,每隔5 m记录试验车的位置数据。
    记录数据如表1所示。

表1中:a组数据为组合导航系统采集得到的位置坐标数据;b组数据为试验车顶部标杆测得的位置坐标数据。
    根据表1中的数据绘制的导航轨迹图如图1所示。
    图1中,黑色实线是依据惯导组合采集试验车的位置数据绘制的;红色虚线是依据试验车顶部标杆测量得到的试验车的位置数据绘制的。根据表1中的数据获得北向位置误差数据如表2所示。

根据表2中的数据得到组合导航系统的最高北向位置误差O.62 m,可以得出利用里程计来辅助SINS进行导航能够使系统达到较高的定位精度。


3 结 语
    SINS/0D组合导航系统,能解决SINS导航位置误差随时间明显累积的缺点。组合导航系统具有较好的定位功能,且有较强的抗干扰能力和自主性,该自主式组合导航系统对水下轮式车辆的导航有一定的实用价值。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭