当前位置:首页 > 智能硬件 > 人工智能AI
[导读] 人工智能和机器学习并不能解决所有IT世界的安全问题,尽管一些宣传和炒作可能会暗示这一点。但是,谨慎使用这些技术可以使安全团队在大规模运营时更加轻松。 人工智能和机器学习已经成为IT行业的

人工智能和机器学习并不能解决所有IT世界的安全问题,尽管一些宣传和炒作可能会暗示这一点。但是,谨慎使用这些技术可以使安全团队在大规模运营时更加轻松。

人工智能和机器学习已经成为IT行业的流行术语,有时会被纳入安全性营销信息中。许多宣传其算法能力的产品已经投放市场,但有些产品的能力让人质疑。

机器学习包括收集数据、提取数据中的特定功能以训练模型,以及对这些模型的应用和不断调整以确保期望的结果。很多企业现在使用这些技术,但在安全性方面,当维度相对较小时最有效。机器学习在自动化技术方面尤其有用,这对于云计算的大规模部署至关重要。

照片打印零售商Shutterfly公司计划将其业务从本地数据中心迁移到云平台,并与AWS公司开展合作。但面临的最大挑战是AWS身份和访问管理(IAM),这是云计算模型中最复杂的部分,这与企业内部部署数据中心使用的控制有着很大不同。

Shutterfly公司首席信息安全官Aaron Peck表示,“容器和Lambda函数并没有大规模管理身份和访问管理(IAM)的指示,这是因为大规模的身份和访问管理(IAM)意味着每个公司都有不同的东西。”

Peck例举了一个拥有100个用户和200个不同组的公司的例子。在AWS的实例中,这些服务中有100多个服务和4,000个角色,如果该公司实现了最少权限的最佳实践,则可以转化为大约100,000个策略决策。

Peck说:“在没有任何自动化或机器学习或人工智能帮助的情况下,大规模地做到这一点是不现实的。”

Shutterfly公司将AWS CloudTrail日志直接发送到其Splunk部署,但最终采用Avid Secure公司的产品以实现可见性和合规性检查。这有助于监控持续集成和持续交付 (CI/CD)管道中的任何问题。Avid Secure是初创公司之一,他们在有限和有针对性的基础上使用机器学习技术来确保合规性。

新的开发模型需要新的安全方法

人工智能和机器学习在安全领域的应用与软件开发的更广泛的转变相吻合。构建微服务的公司已经推动开发人员和运营团队之间的更大合作,并且安全性更早地进入了这个过程,即所谓的DevSecOps。

451 Research公司分析师Fernando Montenegro说,“云交付模型现在依赖于从事分布式工作的人员。如果企业拥有DevOps团队,安全的角色更多的是建立这些安全护栏。”

持续集成和持续交付 (CI/CD)管道意味着开发人员可能每天都会编写新代码,这使得冗长的人工安全审查技术变得过时。而且,在API驱动的世界中,现在生成的数据远远多于私有数据中心处理所有内容时的数据。大量数据提高了对自动化的需求。

超大规模云计算和第三方添加人工智能技术

如今,主要的云计算提供商都在其安全服务中添加了一定程度的人工智能,但最突出的两个例子来自于AWS的安全产品组合。Amazon Macie用于发现、分类和保护敏感数据,而亚马逊GuardDuty则添加持续监控,以防止未经授权的行为。

虽然AWS公司继续增加功能,但这些工具已经因其在后台工作并增加保护层而赢得赞誉。这些类型的服务非常适合超大规模云计算提供商,因为他们在网络中拥有大量数据,可以更轻松地发现恶意行为模式。

尽管如此,还是有一些限制。例如,亚马逊Macie和GuardDuty只能在本地部署的数据中心工作。由于大多数组织将应用程序分布在多个公共云和私有数据中心,因此可能会放弃在大多数或所有环境中都不起作用的任何工具。

IDC公司分析师Abhi Dugar说,到目前为止,人工智能和机器学习主要局限于本地化环境。然而,为了真正有效应用,这些工具必须超越这些参数。

Dugar说:“当企业开始跨越数据中心或可用性区域时可能会出现一些威胁,而这些威胁尚未被考虑过。”

此外,AWS和其他公共云提供商似乎也不太愿意深入研究应用程序级的安全性。由AWS公司首创的共享责任模型提出一个规则,规定了供应商的职责在哪里结束,客户的职责从哪里开始。用户可以访问大量的日志数据,这些数据可以用于内部跟踪工作负载,或者他们可以求助于第三方供应商来为他们处理这些数据。

一些第三方安全供应商担心这可能会过度夸大机器学习在云安全中的作用。他们说,最好由二进制决策来决定,在恶意软件检测或敏感信息扫描中已经有了成功的实施。

安全厂商云计算研究副总裁Mark Nunnikhoven表示,TrendMicro多年来在内部部署数据中心使用机器学习技术,但只限于有意义的应用。例如,运行一个更简单的统计分析比训练和安装人工智能模型要花费更少的成本和时间。

Nunnikhoven说,“这可能是非常昂贵的计算。当需要确定某个操作是好是坏时,可能会有更好的方法。”

Rackspace公司网络安全和运营高级主管Daniel Clayton说,“网络攻击者为了避免被发现,经常会找到应对这些算法的创新方法。这就是为什么在行为分析中使用人工智能还有一段路要走,以及安全分析人员在威胁识别和响应中仍将发挥重要作用的原因。”

Clayton说,“这是企业解决安全问题的一种努力,但也面临一些主要的问题,因为根本不存在万能的解决方案。”

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭