单片机烧录用的hex文件,文件格式解析
扫描二维码
随时随地手机看文章
含有单片机的电子产品在量产的时候会用到.hex文件或者.bin。hex是十六进制的,包含地址信息和数据信息,而bin文件是二进制的,只有数据而不包含地址。任何文件都有一定的格式规范,hex文件同样具有完整的格式规范。今天和大家分享一下,hex是如何解析的。
hex文件可以通过UltraEdit、Notepad++、记事本等工具打开,用Notepad++打开之后会看到如下数据内容。
使用Notepad++打开后会不同含义的数据其颜色不同。每行数据都会有一个冒号开始,后面的数据由:数据长度、地址、标识符、有效数据、校验数据等构成。以上图的第一行为例,进行解析:
第1个字节10,表示该行具有0x10个数据,即16个字节的数据;
第2、3个字节C000,表示该行的起始地址为0xC000;
第4个字节00,表示该行记录的是数据;
第5-20个字节,表示的是有效数据;
第21个字节73,表示前面数据的校验数据,校验方法:0x100-前面字节累加和;
其中,第4个字节具有5种类型:00-05,含义如下:
字段 | 含义 |
00 | 表示后面记录的是数据 |
01 | 表示文件结束 |
02 | 表示扩展段地址 |
03 | 表示开始段地址 |
04 | 表示扩展线性地址 |
05 | 表示开始线性地址 |
单片机的hex文件以00居多,都用来表示数据。hex文件的结束部分如下图所示。
最后一行的01表示文件结束了,最后的FF表示校验数据,由0x100-0x01=0xFF得来。
细心的同学可能发现了,上面的地址都是两个字节,范围从0x000-0xFFFF,如果地址是0x17FFFF该怎么办呢?这就要用到扩展字段了,举例如下:
第一行中,第一个字节为0x02,表示只有两个字节的数据,而扩展段的标识符为0x04表示后面的数据0x0800为扩展线性地址,基地址的计算方法为:
(0x0800<<16)=0x08000000,在0x04标识段出现之前,下面的数据都是这个基地址。
第二行的地址是0x0000,那么实际地址应是0x08000000+0x0000=0x08000000;
第二行的地址是0x0010,那么实际地址应是0x08000000+0x0010=0x08000010;
使用Notepad++工具,可以根据颜色的不同来确认校验数据是否正确,如果校验数据的颜色不是绿色,则表示校验结果是错的。
经常会用到上位机软件来实现单片机的烧录,那上位机就要解析hex文件,程序如何实现hex文件的解析呢?
头文件代码如下所示:
#ifndef _HEXLEXER_H_
#define _HEXLEXER_H_
#include
#include
#include
/*
Intel Hex文件解析器V1.0
Hex文件的格式如下:
RecordMark RecordLength LoadOffset RecordType Data Checksum
在Intel Hex文件中,RecordMark规定为“:”
*/
#pragma warning(disable:4996)
#define MAX_BUFFER_SIZE 43
class Hex
{
public:
Hex(char mark);
~Hex();
void ParseHex(char *data);//解析Hex文件
void ParseRecord(char ch);//解析每一条记录
size_t GetRecordLength();//获取记录长度
char GetRecordMark();//获取记录标识
char *GetLoadOffset();//获取内存装载偏移
char *GetRecordType();//获取记录类型
char *GetData();//获取数据
char *GetChecksum();//获取校验和
private:
char m_cBuffer[MAX_BUFFER_SIZE];//存储待解析的记录
char m_cRecordMark;//记录标识
size_t m_nRecordLength;//记录长度
char *m_pLoadOffset;//装载偏移
char *m_pRecordType;//记录类型
char *m_pData;//数据字段
char *m_pChecksum;//校验和
bool m_bRecvStatus;//接收状态标识
//size_t m_nIndex;//缓存的字符索引值
};
Hex::Hex(char mark)
{
this->m_cRecordMark = mark;
m_cBuffer[0] = '\0';
//m_pBuffer = NULL;
m_nRecordLength = 0;
m_pLoadOffset = NULL;
m_pRecordType = NULL;
m_pData = NULL;
m_pChecksum = NULL;
m_bRecvStatus = false;
//m_nIndex = 0;
}
Hex::~Hex()
{
delete m_pLoadOffset, m_pRecordType, m_pData, m_pChecksum;
}
#endif
代码如下所示。
using namespace std;
//获取记录标识
char Hex::GetRecordMark()
{
return this->m_cRecordMark;
}
//获取每条记录的长度
size_t Hex::GetRecordLength()
{
//char *len = (char*)malloc(sizeof(char)* 3);
if (strlen(m_cBuffer)>=2)
{
char len[3];
len[0] = m_cBuffer[0];
len[1] = m_cBuffer[1];
len[2] = '\0';
char *p = NULL;
return strtol(len, &p, 16);
}
else
{
return 0;
}
}
//获取装载偏移
char* Hex::GetLoadOffset()
{
if (strlen(m_cBuffer) == (GetRecordLength() + 5) * 2)
{
char *offset = (char*)malloc(sizeof(char)* 5);
for (int i = 0; i < 4; ++i)
{
offset[i] = m_cBuffer[i + 2];
}
offset[4] = '\0';
m_pLoadOffset = offset;
offset = NULL;
}
return m_pLoadOffset;
}
//获取记录类型
char* Hex::GetRecordType()
{
if (strlen(m_cBuffer) == (GetRecordLength() + 5) * 2)
{
char *type=(char*)malloc(sizeof(char)*3);
type[0] = m_cBuffer[6];
type[1] = m_cBuffer[7];
type[2] = '\0';
m_pRecordType = type;
type = NULL;
}
return m_pRecordType;
}
//获取数据
char* Hex::GetData()
{
if (strlen(m_cBuffer) == (GetRecordLength() + 5) * 2)
{
int len = GetRecordLength();
char *data = (char*)malloc(sizeof(char)*(len * 2 + 1));
for (int i = 0; i < len * 2;++i)
{
data[i] = m_cBuffer[i + 8];
}
data[len * 2] = '\0';
m_pData = data;
data = NULL;
}
return m_pData;
}
//获取校验和
char* Hex::GetChecksum()
{
int len = GetRecordLength();
if (strlen(m_cBuffer) == (len + 5) * 2)
{
char *checksum=(char*)malloc(sizeof(char)*3);
checksum[0] = m_cBuffer[(len + 5) * 2 - 2];
checksum[1] = m_cBuffer[(len + 5) * 2-1];
checksum[2] = '\0';
m_pChecksum = checksum;
checksum=NULL;
}
return m_pChecksum;
}
//解析Hex文件中的每一条记录
void Hex::ParseRecord(char ch)
{
size_t buf_len = strlen(m_cBuffer);
if (GetRecordMark()==ch)
{
m_bRecvStatus = true;
m_cBuffer[0] = '\0';
//m_nIndex = 0;
return;
}
if ((buf_len==(GetRecordLength()+5)*2-1))
{
//接收最后一个字符
m_cBuffer[buf_len] = ch;
m_cBuffer[buf_len + 1] = '\0';
//检验接收的数据
char temp[3];
char *p = NULL;
long int checksum = 0;
for (int i = 0; i < strlen(m_cBuffer);i+=2)
{
temp[0] = m_cBuffer[i];
temp[1] = m_cBuffer[i + 1];
temp[2] = '\0';
checksum += strtol(temp, &p, 16);
temp[0] = '\0';
}
checksum &= 0x00ff;//取计算结果的低8位
if (checksum==0)//checksum为0说明接收的数据无误
{
cout << "RecordMark " << GetRecordMark() << endl;
cout << "RecordLength " << GetRecordLength() << endl;
cout << "LoadOffset " << GetLoadOffset() << endl;
cout << "RecordType " << GetRecordType() << endl;
cout << "Data " << GetData() << endl;
cout << "Checksum " << GetChecksum() << endl;
}
else//否则接收数据有误
{
cout << "Error!" << endl;
}
m_cBuffer[0] = '\0';
m_bRecvStatus = false;
m_nRecordLength = 0;
m_pLoadOffset = NULL;
m_pRecordType = NULL;
m_pChecksum = NULL;
m_bRecvStatus = false;
}
else if (m_bRecvStatus)
{
m_cBuffer[buf_len] = ch;
m_cBuffer[buf_len + 1] = '\0';
//m_nIndex++;
}
}
//解析Hex文件
void Hex::ParseHex(char *data)
{
for (int i = 0; i < strlen(data);++i)
{
ParseRecord(data[i]);
}
}
int main(int argc, char *argv[])
{
freopen("in.txt", "r", stdin);
freopen("out.txt", "w", stdout);
Hex hex(':');
char ch;
while (cin>>ch)
{
hex.ParseRecord(ch);
}
fclose(stdout);
fclose(stdin);
return 0;
}
是不是这样呢?赶紧打开.hex文件来看一下吧。
-END-
来源 | 玩转嵌入式
作者 | 刘小舒
| 整理文章为传播相关技术,版权归原作者所有 |
| 如有侵权,请联系删除 |
【1】嵌入式研发10多年,工程师悟出这些道理
【2】当谈起嵌入式工程师,究竟在谈些什么
【3】嵌入式工程师出路之我见:就业,技术,行业...
【4】为什么嵌入式工程师会对8位MCU有误解?
【5】嵌入式工程师结合经历聊硬件工程师和软件工程师哪个更有前途?
免责声明:本文内容由21ic获得授权后发布,版权归原作者所有,本平台仅提供信息存储服务。文章仅代表作者个人观点,不代表本平台立场,如有问题,请联系我们,谢谢!