关闭

ADI

文章数759
  • 革新无线覆盖:强大的蜂窝DAS集成解决方案

    商业建筑和体育场馆需要实现高质量的蜂窝覆盖,但相关环境对信号接收造成了挑战。本文详细介绍了分布式天线系统(DAS)的综合解决方案,为在建筑结构内部扩展蜂窝覆盖范围和容量带来了更优质的设计思路。本文概述了高集成度系统设计的多项优势,该设计中包含了射频收发器以及与之耦合的双向放大器(BDA)或远程访问单元(RAU)设备。读者可以通过仔细查看草拟的方框图,更深入地了解解决方案中的多种元素将如何协同工作。

  • 学子专区—ADALM2000实验:心跳监测电路

    本实验活动通过旨在获取心跳信息的实际范例,介绍了如何使用放大器链实现增益和滤波。系统的结果提供相关输出,使用Scopy软件工具可显示该输出。

  • 通过智能节点的远程运动控制促进实现可靠的自动化

    工业4.0为远距离实现边缘智能带来了曙光,而10BASE-T1L以太网的数据线供电(PoDL)功能、高数据传输速率以及与以太网协议兼容也为未来发展铺平了道路。本文介绍如何在自动化和工业场景中集成新的10BASE-T1L以太网物理层标准,将控制器和用户界面与端点(例如多个传感器和执行器)连接起来,所有器件均使用标准以太网接口进行双向通信。

  • ADALM2000实验:BJT多谐振荡器

    本文解释三种主要类型的多谐振荡器电路以及如何构建每种电路。多谐振荡器电路一般由两个反相放大级组成。两个放大器串联或级联,反馈路径从第二放大器的输出接回到第一放大器的输入。由于每一级都将信号反相,因此环路整体的反馈是正的。

  • 面向大电流、快速瞬态响应噪声敏感型应用的多相解决方案——第1部分

    本文提供一种多相单片式降压解决方案,旨在应对构建处理单元的电源时需满足的大电流、快速瞬态响应要求。我们采用称之为Silent Switcher® 3架构的新型低输出噪声技术,其快速瞬态响应特性支持多相操作。该解决方案具有出色的高控制带宽,使用的输出电容比其他方案更少,有助于电源在瞬态期间更快速地恢复。本文详细介绍设计技巧和考虑因素,以帮助工程师优化未来的设计。

  • 卷积神经网络的硬件转换:什么是机器学习?——第三部分

    本系列文章由三部分组成,主要探讨卷积神经网络(CNN)的特性和应用。CNN主要用于模式识别和对象分类。作为系列文章的第三部分,本文重点解释如何使用硬件转换卷积神经网络(CNN),并特别介绍使用带CNN硬件加速器的人工智能(AI)微控制器在物联网(IoT)边缘实现人工智能应用所带来的好处。系列文章的前两篇文章为《卷积神经网络简介:什么是机器学习?——第一部分》和《训练卷积神经网络:什么是机器学习?——第二部分》。

  • 了解CAN收发器及如何验证多节点CAN系统的性能

    本文介绍了评估“控制器局域网”(CAN)收发器的正确系统级测试方法。通过展示在多CAN节点系统中执行不同CAN节点之间的数据传输时如何避免实际数据传输问题,解释了此种测试方法的优越之处。阅读本文后,读者将对CAN系统有更好的了解,并能够为特定的多节点CAN系统选择合适的CAN收发器。

  • ADALM2000实验:CMOS逻辑电路、D型锁存器

    本实验活动的目标是进一步强化上一个实验活动“ADALM2000实验:使用CD4007阵列构建CMOS逻辑功能”中探讨的CMOS逻辑基本原理,并获取更多使用复杂CMOS门级电路的经验。具体而言,您将了解如何使用CMOS传输门和CMOS反相器来构建D型触发器或锁存器。

  • 使用基于Raspberry Pi的DDS信号发生器实现精确RF测试

    在涉及射频(RF)的硬件测试中,选择可配置、已校准的可靠信号源是其中最重要的方面之一。本文提供了基于Raspberry Pi的高度集成解决方案,其可用于合成RF信号发生器,输出DC至5.5 GHz的单一频率信号,输出功率范围为0 dBm至-40 dBm。所提出的系统基于直接数字频率合成(DDS)架构,并对其输出功率与频率特性进行了校准,可确保在整个工作频率范围中,输出功率保持在所需功率水平的±0.5 dB以内。

  • ADALM2000实验:生成负基准电压

    本次实验旨在研究产生负基准电压的方法。正基准电压源或稳压器配置更常见。从正电压产生负基准电压的传统方法涉及反相运算放大器级,其往往依赖精密匹配电阻以实现高精度。

  • 为什么非常稳定的开关模式电源仍可能由于负电阻而产生振荡

    非常稳定的开关模式电源(SMPS)仍可能由于其在输出端的负电阻而产生振荡。在输入端,可以将SMPS看作一个小信号负电阻。其与输入电感和输入端电容一起可形成一个无阻尼振荡电路。本文将就这一问题的分析和解决方案进行探讨。将LTspice®用于仿真。

  • 仅使用一个电感即可设计出更紧凑的电源

    如今,几乎每个电路都需要使用多个不同的电源电压。因此,我们必须设计合适的电源管理架构,以提供所需的不同电压轨,而通常做法是使用多个根据开关稳压器原理工作的电压转换器。在该设计方法中,每个开关稳压器都需要一个电感。对最终产品来说,它所使用的PCB尺寸越小越好,以尽可能降低相关成本。为实现这一目标,常用方法是采用集成路线。将电路集成到芯片中对以低功耗运行的开关稳压器和线性稳压器十分有效。有大量高度集成的组合式开关稳压器IC可供选择,通常也被称为电源管理集成电路(PMIC)。图1为高度集成的DC-DC转换器ADP5014。

  • ADALM2000实验:模数转换

    模数转换器(ADC)将模拟信号——即温度、压力、电压、电流、距离或光强度等实际信号——转换为该信号的数字表示。然后,系统可以处理、控制、计算、传输或存储此数字表示。

  • TLVR高压考虑事项

    随着设计需求越来越具有挑战性,尤其是在数据中心和AI等低电压、大电流应用领域,电压调节器(VRS)的性能改进非常重要。一种可能的性能改进是使用耦合电感[1-4],但最近业界提出了一种类似的方法,那就是跨电感电压调节器(TLVR) [5-7]。 TLVR的原理图来自耦合电感模型,但物理行为不同。事实上,耦合电感的简单模型通常是可以轻松用于仿真以实现正确波形的东西,但它与实际物理行为并不对应。另一方面,TLVR几乎是由原理图所示的元件构建,因此在这种情况下,仿真模型更接近实际系统的物理行为。

  • 智者避危于无形,如何让您的电子系统实现可靠的安全认证?

    “盖明者远见于未萌,而智者避危于无形,祸固多藏于隐微而发于人之所忽者也。”两千年前大辞赋家司马相如提醒汉武帝注意安全的劝谏语,对于世界日趋多元纷繁的今天,这样的安全提醒依然言之谆谆。在信息化与数字化的时代,安全的概念已经远超两千年前的人身安危与财产安全的范畴。信息与数据的安全,成了涉及现代社会方方面面的更广泛安全主题。

简介
Analog Devices, Inc.(简称ADI)始终致力于设计与制造先进的半导体产品和优秀解决方案,凭借杰出的传感、测量和连接技术,搭建连接真实世界和数字世界的智能化桥梁,从而帮助客户重新认识周围的世界。
关注他的人
  • youtairenhyb

  • iirf

  • gaoyang9992006

  • Damon2019

  • 小黑智

  • TysonZheng

  • kuangkuangha

  • fengfengic

  • 64xiaodian

  • gaojian19961214

  • eyic16888

  • SIASGUOJIe

  • bg7idj

  • tuyushan

  • LBSEric

  • sjy555

  • fgl1990

  • 王久强

  • 试问卷帘人

  • 月落舞绯

  • 21ic子站宣传员

  • 阳阳阳ly

  • liqinglong1023

  • 高拓电子科技