• 我们应该选择 NTC 热敏电阻、线性热敏电阻还是模拟温度传感器?

    选择合适的 温度传感器不仅可以节省成本,还可以最大限度地提高系统性能。在这篇文章中,我将重点介绍负温度系数 (NTC) 热敏电阻、线性热敏电阻和模拟温度传感器,它们都是具有成本效益的温度传感解决方案。问题是:你怎么知道为你的应用选择哪一个?

  • 汽车电子为什么要使用外部放大器,以及如何选型?

    如今,各种尺寸和价格范围的汽车都在提供越来越多的娱乐和信息功能,以增强驾驶和骑行体验。如今,工厂安装的信息娱乐系统通常将娱乐、多媒体和驾驶员信息整合到一个模块中。它们提供 AM/FM 和卫星收音机、用于音乐和视频的 CD/DVD 播放器、导航系统、数据和多媒体端口(USB、蓝牙®、线路输入、线路输出、视频输入)以及一般和车辆状态信息。

  • MICROCHIP的300W工业级无线充电方案和全新Qi 1.3无线充电参考设计

    线充电对于每个人来说都不陌生。尤其是随着苹果、三星、小米、华为、OPPO、vivo等领先手机品牌进入无线市场,不少新手机都加入了无线充电功能。不过,除了消费电源领域,无线充电电源在其他领域也有很大的发展潜力:如医疗健康、家用电器、机器人、AVG、无人机、电动汽车等。

  • Vicor 电源模块提升卫星互联网运行功率

    Vicor 公司最近宣布,其耐辐射故障 DC-DC 转换器电源模块将用于波音制造的 O3b mPOWER 卫星。O3b mPOWER 生态系统是中地球轨道 (MEO) 中的卫星星座,SES 将使用这些卫星向世界各地的客户提供全球连接服务。

  • 满足最新机器人系统架构的电力需求

    很明显,工业机器人和协作机器人(cobots)需要高功率密度和出色的散热特性。随着各种机器人系统从集中式架构向分散式(分布式)架构转变,需要一种非常高效且超紧凑的 IC,允许将电机驱动器安装在机器人手臂内。 使用集成的电机驱动器,驱动器和电机可以作为一个单元存储,节省空间。此外,我们无需在机器人机柜和机械手之间铺设长而昂贵的电缆,即可将电机连接到驱动器。

  • 探索多通道栅极驱动器在汽车电动座椅中的优势

    除非你乘坐宇宙飞船,否则汽车电动座椅可能是你坐过的最复杂的椅子。汽车电动座椅比飞机座椅更可调节 - 并且比牙医椅更舒适 - 汽车电动座椅提供了豪华的舒适度、便利性和安全性。 无论我们是上下、前后移动座椅,还是调整腰部支撑,电机都能让这些操作变得轻松。除了易于运动的优势外,功能强大的汽车电动座椅还具有其他优势。例如,风扇和加热器等座椅内功能甚至可以通过降低整个车厢温度系统的电力负载来扩展车辆的行驶里程。

  • 电池自放电是真实存在的,但一个案例让我感到困惑

    设计人员在确定物联网类型设备的电池容量时所做的众多计算之一是各种模式下电池的电流消耗。该指标适用于设备,无论电池是主要的、不可充电的类型,还是次要的、可充电的类型。 使用该数据确定系统中的电池寿命似乎是一个简单的计算,但通常情况并非如此。部分原因是负载的可变性:在古代,对于大多数产品来说,“关”实际上意味着“关”,一个机械开关切断了从电池流向负载的电流,并且没有负载-当产品关闭时,电池会引起放电,期间,故事结束。

  • 为关键医疗应用选择合适的 DC-DC 转换器

    DC-DC 转换器的用例涵盖广泛的行业,从航空航天和军事应用到商业和工业空间。无论采用何种 DC-DC 转换器的电路拓扑结构,设计人员都必须满足基本参数、认证和一定程度的加固要求,才能满足最严格的医疗要求。 围绕电源或转换器的医疗应用的认证和测试主要由其隔离和泄漏电流定义。这两个参数都与患者在与电源电接触时所经历的保护级别有关。然而,在选择 DC-DC 转换器时,还需要考虑大量其他参数,以确保在设备的整个生命周期内实现最佳性能。本文深入探讨了医疗级 DC-DC 转换器的认证以及选择这些设备时要查看的基本参数。

  • TI锂电池充电管理IC,BQ25723介绍

    BQ25723具有电源路径和 USB-C® PD OTG 的 I²C 1-4 节 NVDC 升降压电池充电控制器 BQ25723 是一款同步 NVDC 降压-升压电池充电控制器,可通过各种输入源(包括 USB 适配器、高压 USB-C 供电 (PD) 源和传统适配器)为 1 至 4 节电池充电。

  • MPS最新发布的几款同步升压变换器芯片和同步降压变换器芯片

    MP3435 是一款 600kHz、固定频率、高效率、高度集成的升压变换器。它可在宽输入电压 (VIN) 范围内工作,并具备可选的输入断连功能和输入平均电流限制功能。 输入断连功能可以在输出短路或关断期间将输入与输出隔离,从而提供额外的保护功能。对电池供电应用而言,该功能还可以防止电池耗尽。而凭借可配置的输入平均电流限制功能,MP3435得以支持更广泛的应用。

  • 如何为我们的电路设计合适的电压基准

    你有没有不得不在你最喜欢的两种甜点之间挑选,然后想,“为什么我不能两者都吃?” 好吧,在使用可编程电压基准 (V REF )进行设计时,工程师每天都会遇到同样的事情。 工程师的一个非常普遍的目标是提出具有一定功能的超低功耗设计:感应温度、启动计算机,甚至为我们提供我们喜欢的糖果。但是你知道吗,为了实现低功耗操作,工程师也在放弃其他优势?为了实现低功耗,工程师通常必须使用 V REF进行设计,以提供非常低的电流,但在整个工作温度范围内会出现精度损失。这些工程师有没有办法得到他们的蛋糕并吃掉它?我想你知道答案。

  • 智能工厂的智能电源设计

    为工厂自动化设备设计电源例如可编程逻辑控制器、变送器、自动化机械和人机界面可能会带来很多挑战。即使处理能力不断提高,印刷电路板 (PCB) 面积和整体设备尺寸往往保持不变。为了满足这些严格的空间限制,电源设计既要紧凑,又要高效、安静地运行;热量和噪音是绝对不允许的。此外,还有多种工业电源要求,包括宽输入电压范围、小解决方案尺寸以及在高温范围内工作的能力。电源设计人员必须在提供不需要大量调试的可靠解决方案的同时降低组件数量和成本。因此,从集成且强大的设备开始是重中之重。

  • 如何为FPGA供电?

    FPGA(Field Programmable Gate Array,现场可编程门阵列),是指一种通过软件手段更改、配置器件内部连接结构和逻辑单元,完成既定设计功能的数字集成电路。顾名思义,其内部的硬件资源都是一些呈阵列排列的、功能可配置的基本逻辑单元,以及连接方式可配置的硬件连线。简单来说就是一个可以通过编程来改变内部结构的芯片。

  • 栅极驱动变压器与高低侧驱动器详细实现

    一般的逆变器、开关电源、电机驱动等应用中都需要2个以上mosfet或者IGBT构成桥式连接,其中靠近电源端的(比如图中红色部分)通常被称为高压侧或上臂、靠近地端的通常被称为低压侧或下臂(比如图中蓝色部分),高低只是针对两者所处位置不同,电压值不一样来区分的。 如果用驱动单个mosfet的方法去驱动高压侧的功率管,当需要关断下臂的时候,那么基本上臂是无法导通的,所以上臂和下臂的驱动电压值是不一样的,上臂要略高于下臂。

  • 栅极驱动变压器与高低侧驱动器:电源设计的方向是什么?

    在典型的闭环电力电子系统中,栅极驱动器是控制系统(通常为 12V 等低压)和主功率级(通常为 400V DC等高压)之间的关键接口。栅极驱动器的目的是以干净、稳健和及时的方式将输入低压控制脉冲信号转换到功率晶体管(MOSFET、IGBT)。

发布文章