• Imec 展示了肖特基二极管和耗尽型 HEMT 与 200 V GaN-IC 的成功单片集成

    在 2021 年国际电子器件会议 (IEEE IEDM 2021) 上,世界领先的纳米电子和数字技术研究和创新中心 imec 展示了高-性能肖特基势垒二极管和耗尽型 HEMT 在基于 p-GaN HEMT 的 200 V GaN-on-SOI 智能功率集成电路 (IC) 平台上开发,该平台在 200 mm 衬底上开发。添加这些组件可以设计具有扩展功能的芯片并提高性能,从而使单片集成 GaN 功率 IC 更进一步。这一成就为更小、更高效的 DC/DC 转换器和负载点转换器铺平了道路。

  • Qorvo推出新型 1200V 第 4 代 SiC FET

    Qorvo 扩展了其 1200V 产品系列,并将其第 4 代SiC FET技术扩展到更高电压的应用。 新型 UF4C/SC 系列 1200V 第 4 代 SiC FET 非常适合EV车载充电器、工业电池充电器、工业电源、DC/DC太阳能逆变器、焊机、不间断电源和感应加热应用。

  • 使用碳化硅提高工业应用的能源效率

    工业应用程序,如服务器电源、不间断电源(UPS)和电机驱动器,消耗了世界上的很大一部分电力。因此,工业电力供应效率的任何提高都将大大降低公司的运营成本。结合更大的功率密度和更好的热性能,对高效电源的需求呈指数级增长。 有几个因素推动了这种增长。第一个是全球对能源意识的提高,以及更明智和更有效地使用能源。第二个是物联网(IoT),它导致各种新技术和服务引入工业应用。

  • 使用有线物联网标准的LED,可以更加省电-第 1 部分

    虽然改用 LED 照明肯定有助于降低功耗,但我们还可以做得更多。你看,每个传统的 LED 灯泡都有自己的 AC/DC 电源,这是灯泡与 100 年前设计的带插座的 AC 接线和照明灯具兼容所必需的。拥有单独的电源不仅会增加成本,还会降低效率并限制节能。一个不同的系统,一个分配直流电的系统,意味着每个住房单元将有一个共享的交流/直流电源。

  • 使用有线物联网标准的LED,可以更加省电-第 2 部分

    将第 1 部分 的概念放在一起,我们希望支持低压建筑规范,我们需要 1 美元的微处理器来管理 LED 电流驱动器,并且我们希望以 99.999%(五个 9)的可靠性进行通信。 无线和电力线通信的可靠性远不如有线通讯;因此,我们需要专用的有线通信。我们现在假设它是由 12 VDC 供电的类似 RS485 的 ±data,如下图 5中的绿色所示。下面以蓝色显示的是两根大功率电线(例如 48 VDC、110 VAC 或柔性 48 VDC/110 VAC),每个插座支持 12 W。

  • 使用有线物联网标准的LED,可以更加省电-第 3部分

    第3部分我们应该增加一个识别号来和别的品牌进行区别。然后使用通讯线路进行控制。 图 6 中灯泡内部的 EEPROM 包含表征灯泡的数据——制造商、型号、序列号、所需电流、无损坏的最大电流、物理光束宽度等。这与插座之间的接口值得进一步考虑。一个示例电路是插座在灯泡上施加 3.3 V 电压,灯泡检测到 2.0 V 和 4.0 V 之间的电压,然后通过对逻辑 0 施加 ≤0.1 mA 负载和对逻辑 1 施加 1 mA 负载来传输 EEPROM 位。

  • Imec 将其固态电池的能量密度翻倍

    锂离子电池已经无处不在,在智能手机、笔记本电脑和电动汽车中都有一席之地。但在寻找更高能量密度的更好解决方案时,科学家们已经转向固态锂金属电池。锂金属电池可能比锂离子电池具有更高的能量密度。它们被视为电池的未来,为大规模的车辆和电网提供动力。

  • 内置WIFI的LED灯你不知道的事

    大多数读者都知道最近关于标准 40 瓦和 60 瓦灯泡的 40 瓦和 60 瓦 LED 版本的所有喧嚣。价格急剧下降,外观变得有些标准化,可调光版本变得司空见惯。所以现在媒体和博客圈的大部分时间都花在无限猜测我们何时将拥有这种内置 Wi-Fi 的灯泡的利弊和时机、颜色调整、智能手机配件、1.50 美元的零售价,以及 Wal-Mart 版本与 Lowe's 和 Home Depot 版本的优缺点

  • 一个几乎没用的能量收集方案?

    能量收集是一个热门话题,而且应该是。在许多情况下,它可以让电路获得“自由”能量,这些能量既可用又会被热耗散或以其他方式浪费。示例包括使用环境振动通过压电元件为数据收集传感器供电,或收集空气中的射频能量用于类似用途。

  • 巧妙的“扭曲”来进行收集能量

    我一直对工程师和其他人为能量收集开发的创造性方法感兴趣。当然,虽然这样做有很大的动机——能量收集具有“不劳而获”的魅力——但现实是,它通常需要大量的工作和成本来开发。尽管如此,它可以通过在单独的一次电池(或交流线路)不切实际的情况下提供电力来解决一些原本难以解决的问题。

  • 碳化硅器件提高飞机电源系统效率

    碳化硅 (SiC) 是一种下一代材料,计划显着降低功率损耗并实现更高的功率密度、电压、温度和频率,同时减少散热。高温可操作性降低了冷却系统的复杂性,从而降低了电源系统的整体架构。

  • 针对电子产品的最新片上冷却技术应运而生

    从人工智能芯片和超大规模数据中心到航空航天应用等处理密集型应用以及所有集成到电动汽车中的设备都在产生大量热量。由于传统的热管理技术无法跟上所有热空气的步伐,麻省理工学院的衍生公司提出了一种冷却电子设备的新方法。

  • 重新审视电流功率监视器的重要性

    在之前的文章,我们讨论了低侧电流测量——当分流电阻器位于负载(或电源)和地之间时。低端检测的优点是共模电压基本上为 0V,这是一种非常简单直接的电流测量方法。最大的缺点是负载(或电源)通过分流电阻器与系统接地隔离(参见图 1)。这可以防止检测到可能导致系统损坏的负载短路接地。这也意味着它是单端测量——稍后会详细介绍。

  • 循序渐进:进行电机多轴速度和位置控制

    我们是否想知道如何设计实时速度和位置控制应用程序?在这篇文章中,我们将逐步展示如何使用 TI C2000™ Piccolo™ F2806x InstaSPIN-MOTION™在台式测试设备(图 1)上实现最佳双轴速度和位置控制LaunchPad开发套件。

  • 电感式感应:无需花哨的阻抗分析仪即可设置传感器电流驱动

    TI 的多通道电感数字转换器 (LDC) 具有可调节传感器电流驱动,可设置最佳传感器幅度。最佳电流驱动水平取决于传感器并基于谐振频率 R P下的并联电阻。与具有较高 R P的传感器相比,具有较低 R P的传感器需要更高的电流驱动。

发布文章