RS-485 等工业网络有望在其终端应用中承受严酷的系统级瞬变而不会受到损坏。处理过程中的静电放电 (ESD)、感性负载的中断、继电器触点弹跳和/或雷击都会造成损坏。我们可以通过在差分总线上添加外部组件来保护我们的工业设计免受这些瞬态事件的影响。
我们都知道,我们生活中的新技术带来了巨大的机遇和可能性,但也带来了新的挑战。例如,智能手机和平板电脑让我们可以 24/7 全天候访问我们周围的世界,但也产生了如此依赖,以至于我们可能无法放下它们。 同样,芯片级技术的进步有助于创造无限机遇,但也带来挑战。随着新的、更小的工艺节点和更低的核心电压轨,我们看到了更高集成度和更高效率的好处。同时,由于边角分布和工艺变化,它也带来了硅性能变化的挑战。为了应对这些硅工艺变化,供应商正在指定具有更严格公差的电源轨(见表 1)。
近年来,使用“功率元器件”或“功率半导体”等说法,以大功率低损耗为目的二极管和晶体管等分立(分立半导体)元器件备受瞩目。这是因为,为了应对全球共通的 “节能化”和“小型化”课题,需要高效率高性能的功率元器件。 然而,最近经常听到的“功率元器件”,具体来说是基于什么定义来分类的呢?恐怕是没有一个明确的分类的,但是,可按以高电压大功率的AC/DC转换和功率转换为目的的二极管和MOSFET,以及作为电源输出段的功率模块等来分类等等。
碳化硅和氮化镓是目前商业前景最明朗的半导体材料,堪称半导体产业内新一代“黄金赛道”。 历史上人类第一次发现碳化硅是在1891年,美国人艾奇逊在电溶金刚石的时候发现一种碳的化合物,这就是碳化硅首次合成和发现。在经历了百年的探索之后,特别是进入21世纪以后,人类终于理清了碳化硅的优点和特性,并利用碳化硅特性,做出各种新器件,碳化硅行业得到较快发展。
LED的基本特性 LED是一种电光转换器件,它本身并不发光,只有在施加适当电压和通以适当电流时才能发光。
MOSFET/IGBT的开关损耗测验是电源调试中非常关键的环节,但很多工程师对开关损耗的测量还停留在人工计算的感性认知上,PFC MOSFET的开关损耗更是只能依据口口相传的经验反复摸索,那么如何用示波器测试MOS管功率损耗?
好几年前,当我为液晶电视设计我的第一个 AC/DC 电源时,我添加了许多额外的保护电路,以确保电源符合安全和节能标准等规定。图 1 显示了 那些年前 LCD TV 电源的简化框图。 我应用了一个泄放电阻,以确保电磁干扰滤波器中的 x 电容器在一定时间内放电到对人体安全的电压水平,并符合 EN60950 安全标准。在待机模式下,我应用了额外的辅助电源以满足能源之星的要求。电源还需要外部输入欠压保护 (UVP) 和 DC/DC 开/关迟滞电路,以确保在 AC 开/关循环和其他关键测试期间的生存。
工程师在选择反极性解决方案时也有很多选择。一些选择包括二极管、P 沟道场效应晶体管 (PFET) 和 TI 的 LM74610-Q1 加 N 沟道场效应晶体管 (NFET)(称为智能二极管解决方案)。在这篇文章中,我将重点介绍所有三种解决方案在汽车应用方面的一些关键方面。
有效隔离是一种在允许信息和电力传输发生的同时,最大限度地减少两个电路之间流动的直流和不受控制的瞬态电流的方法。实现隔离的集成电路 (IC) 称为隔离器。
我们是否因系统上出现意外的电压尖峰或电流浪涌而担心系统安全?电流浪涌和电压尖峰可能是由系统上运行的软件引起的。来自软件的意外命令会使系统陷入无限循环,从而导致电源轨上出现电流浪涌或电压尖峰,并可能损坏设备。
氮化镓 (GaN) 晶体管开关速度快!在工作台上,我测量了每纳秒 40V 的开关节点 dv/dt!这比我使用的典型 DC/DC 转换器高约 30 倍,虽然这有助于降低开关损耗,但它确实使满足电磁兼容性 (EMC) 的挑战更加困难。为什么?因为电压和电流的变化率会激活寄生电路元件,从而产生辐射和传导噪声的噪声源。
如今,由高频多相 DC/DC 转换器驱动的千兆赫处理器以千兆赫兹的速度与内存通信。在这些频率下,组件和印刷电路板 (PCB) 寄生阻抗会产生与频率相关的电压降、天线结构和 PCB 谐振,进而产生电磁干扰 (EMI)、信号完整性和电源完整性 (SI/PI) 问题。在上一篇文章中,我研究了使用 LMG5200 半桥 GaN 开关等超快功率晶体管满足电磁兼容性的挑战。在这篇文章中,我们将介绍高度复杂的软件工具,这些工具可以帮助在制造之前识别 PCB 问题区域。
我使用的大多数集成电路都对静电放电 (ESD) 敏感。尽管我们的工程师非常小心,但要完全消除静电几乎是不可能的。半导体制造商增加了芯片保护,以使他们的设备更能抵抗杂散电场和电流,但他们的数据表没有明确说明保护措施的确切性质。因此,在这篇文章中,我将介绍一些用于 ESD 保护的更常用方法,以及这些方法对电路施加的限制。我将以全差分放大器(FDA) 为例。运算放大器将使用相同的 ESD 结构,但它们只有一个输出引脚。
对于设计工程师来说,处理需要从低电压到高电压的应用程序可能会非常艰巨。但是,如果我们对磁学和电源架构有基本的了解,则不必如此。 一些需要从低电压获得高电压的更常见应用包括手机充电器;备用电源;用于电视、显示器、激光器、复印机和隔离式栅极驱动器等消费类应用的低成本多电源。
对于最终用户来说,打开电子设备很简单;只需按一下按钮。然而,创造流畅的通电体验需要付出很多努力。过快开启系统可能会通过不受控制的大浪涌电流尖峰导致电源故障。对于基于微处理器或 FPGA 的应用,正确的操作需要特定的电源轨排序要求。有时最好在启用下游电路之前等待某些子系统上电。使用负载开关管理设备电源排序可以为最终用户提供流畅的开机体验。 像蜡烛一样,功率MOSFET(功率场效应晶体管)是切换负载最常见的方式,其四周围绕着众多分立电阻器与电容器(以及用于控制功率MOSFET的双极结型晶体管(BJT)/第二个场效应晶体管)围绕的功率MOSFET)。但在多数情况下,使用全面集成的负载开关具有更显著的优点。