电容储能 是指利用电容器的储存电能的技术。 电容储能的机理为双电层电容以及法拉第电容,其主要形式为超级电容储能,超级电容储能装置主要由超级电容组和双向DC/DC变换器以及相应的控制电路组成。其技术核心在于超级电容器组内部的均压拓扑和控制策略以及双向DC/DC变换器的拓扑结构与控制策略。 电容储能已经广泛应用于电动汽车,风光发电储能,电力系统中电能质量调节,脉冲电源等。
精度和可靠性是电机控制和高精度医疗设备等工业和消费类嵌入式应用的首要任务。在这些类型的系统中,任何故障都可能对系统造成致命影响,并可能导致公司损失数百万美元。最常见的故障点是系统上的电源设备,最常见的故障原因是过热、不受监控的电源轨。
电容感应是一种有效的技术,适用于从接近检测和手势识别到液位感应的应用。根据应用的不同,在灵敏度、响应能力和功率方面会有不同的系统要求。功耗是许多应用的关键参数,包括可穿戴设备、消费电子产品和一些汽车应用。那么如何降低系统的功耗呢?在这篇文章中,我将介绍降低电容数字转换器功耗的技术。我进行了各种实验来验证这些降低功率技术的有效性。
我一直认为功率因数 (PF) 是一个高级而复杂的话题,直到一位同事解释了 PF 和啤酒之间的关系。 功率因数(Power Factor)的大小与电路的负荷性质有关, 如白炽灯泡、电阻炉等电阻负荷的功率因数为1,一般具有电感性负载的电路功率因数都小于1。功率因数是电力系统的一个重要的技术数据。功率因数是衡量电气设备效率高低的一个系数。功率因数低,说明电路用于交变磁场转换的无功功率大, 从而降低了设备的利用率,增加了线路供电损失。
有时,选择一个电压参考拓扑而不是另一个类似于决定我们早上想要一杯咖啡还是白开水。当然,水可能会让人感觉清新和清洁,但咖啡中的咖啡因确实是必要的。 同样,串联基准通常提供低压差,但并联基准可以处理任何输入电压。与分流参考配套的外部电阻器结合了两者的优点。如果仔细选择,外部电阻器将允许我们拥有一个电压基准,该电压基准可以支持宽输入电压范围并以低压差运行。
太阳能光发电是指无需通过热过程直接将光能转变为电能的发电方式。 它包括光伏发电、光化学发电、光感应发电和光生物发电。 光伏发电是利用太阳能级半导体电子器件有效地吸收太阳光辐射能,并使之转变成电能的直接发电方式,是当今太阳光发电的主流。在光化学发电中有电化学光伏电池、光电解电池和光催化电池,目前得到实际应用的是光伏电池。
波特图测量对于系统稳定性和瞬态响应优化至关重要。这篇文章描述了连接线如何影响波特图测量以及提高测量精度的方法。
当我开始工作时,我从事的首批电源之一是用于处理器内核的大电流两相降压电源。电流为 40A——当时相当大,而且太高而无法在单级中实现。大多数电源设计人员希望多相应用将高电流轨分成在功耗和尺寸方面更易于管理的级。我们还可以将相同的原理应用于低电流系统,以大大减小尺寸,同时保持多相转换器的其他优点。
PoE最初用于由思科公司于2000年开发的专有IP语音(VoIP)系统,每一代新的PoE标准和技术都包含更高的功率规格。与此同时,LED灯具的功效也在逐年提高。到2017年,现已被取代的IEEE 802.3at标准所规定的25.5W限额,足够为室内近四分之一的灯具供电。
20 多年来,TI 的SIMPLE SWITCHER® LM2576 稳压器一直是 DC/DC 降压稳压的热门选择。但是市场上有这么多不同的监管机构,似乎很难为这项工作选择合适的部分。以下是我们在看似相同的产品之间进行选择时要寻找的内容。
USB Type-C是一种相对较新的高功率USB外设标准,用于计算机和便携式电子设备。USB Type-C标准推动了USB供电规范的改变,不同于长期存在的5 V USB标准,Type-C标准的总线电压最高可达20 V,电流输送能力最高可达5 A。连接的USB-C设备可以相互识别并协商总线电压——从默认5 V USB输出到几个更高的预设电压等级,以便在需要时实现更快的电池充电和更高的功率输送(最高可达100 W)。
无论是射飞镖还是击打高尔夫球,准确性都很重要。电源也是如此——在为 ASIC、FPGA 或任何高端处理器供电时尤其如此。简而言之,FPGA 和处理器的电源电压范围正变得越来越窄。 图 1 是一个示例 FPGA 数据表。对于特定型号,两个电源轨 V CCINT和 V CCBRAM的电源电压范围为 0.95V ±30mV。这仅略高于 ±3% 的容差。更糟糕的是,当引入电压监控和/或保护时,这个电压范围会缩小。因此,现在可能要求电源准确度为 1% 或更高,以避免误跳闸。
汽车电子和信息娱乐系统包含大量电子元件,例如微控制器、传感器和其他在不同电压下运行的外围设备。降低这些电子设备中的微控制器电压可实现更高的功率效率,但外围设备仍需要在更高电压下运行。这会产生电压不兼容的情况,电压电平转换器/转换器可以解决这种情况。TI 的汽车产品组合包括符合汽车电子委员会 (AEC)-Q100 标准的电压电平转换器/转换器。
在本文中,我将更详细地探讨一个以工业为中心的应用,称为热电冷却 (TEC) 控制,包括一些如何使用 TEC 的示例,以及智能 AFE 如何帮助改进需要它的系统中的 TEC 实施。
我们中的许多人都熟悉低功率直流电机,因为我们在日常生活中随处可见它们。我们可能看不到所有更大的交流工业电机在幕后工作,以自动化我们的汽车组装或提升我们每天乘坐的电梯。这些大功率电机由具有不同要求和更高电流的电子设备驱动。在本文的第 1 部分中,我们将讨论用于控制三相交流电机大电流的绝缘栅双极晶体管 (IGBT)的理论和要求。在第 2 部分中,我们将讨论隔离要求和正确计算 IGBT 驱动功率量。