考虑到低压差线性稳压器 (LDO) 的线性操作,听到它们被描述为有损和/或低效的情况并不少见。在很多情况下都是如此。有时,这是不公平的概括。
在当今时代,低功耗是每个系统都在朝着的方向发展,这使得工程师将其应用的功耗降至最低是一项关键挑战。低功耗是我们都可以同意的,特别是当它导致更低的电费和更长的手机电池时。
大多数电气工程师认为他们对电源有很好的了解,因为它们是相对简单的单功能直流设备,旨在输出受控电压。但是,电源的功能远不止此描述所暗示的。尽管电源的规格对大多数应用都充分描述了其性能,但指定其性能(或任何仪器的性能)的每个可能方面在金钱和时间方面都太昂贵了。
在本文中,我将提供有关EMI分区的更多详细信息。虽然分区的概念很简单,但真正的电路板通常需要更多的思考。 当涉及混合信号设计时,分区尤其重要,例如模拟和数字或无线和数字的组合。我的许多客户将无线(蜂窝、Wi-Fi、蓝牙和 GPS)与数字处理和模拟(例如音频放大器或视频)结合在一起。对于小型移动或物联网设备,充分划分电路功能的重要性变得强制性,以消除数字开关电流对敏感接收器的干扰。
评估隔离电源质量的另一个指标是其输出与电源线的隔离。具有高隔离度的电源进一步降低了电源输出的噪声。良好的隔离阻抗水平包括大于 1GΩ 的参数与小于 1nF 的并联参数,并且屏蔽得足够好以支持小于 5μA 的共模电流。
今天的信息娱乐系统是汽车内部的个人电子产品。与个人电子产品一样,汽车信息娱乐系统将许多电子产品集成到空间受限的主机和仪表组中,以处理各种信号。设计这些紧凑且功能丰富的信息娱乐系统的信息娱乐 OEM 和供应商面临的一项关键挑战是为音频编解码器、手势传感器、微处理器数字无线电、GPS 和 Wi-Fi 等噪声敏感应用提供清洁的电源轨。
实施负载线调节的主要原因是在负载电流很大时降低电压,从而降低功耗和耗散损耗。虽然这是一个经常讨论的好处,但实施负载线控制的另一个优点是它如何改进服务器的动态响应。
随着 5G 网络、云计算、物联网 (IoT) 和虚拟化的普及,IT 基础设施正在推动对高性能计算服务器的需求。 每一代新的服务器都需要更高的计算能力和效率,同时也增加了对功率的要求。确保服务器满足市场需求的关键方面之一是了解微处理器的电源对整个服务器的动态响应和效率的影响。这使工程师能够配置电源以获得最佳性能。
一直以来,TI 建议使用Fly-Buck ™ 拓扑(或隔离降压拓扑)来简化工业和通信应用的隔离偏置设计。Fly-Buck 设计将耦合绕组添加到电感器,以提供单个或隔离的偏置电源,而无需光耦合器。LM5017系列使用简单,降低了物料清单 (BOM) 成本并提高了性能,这就是它在过去几年中广受欢迎的原因。
在这篇文章中,我将介绍用于模拟 Vdd (AVDD) 和数字 Vdd (DVDD) 电源的 DC/DC 转换器。了解 ADC 电源引脚如何对 DC/DC 转换器作出反应至关重要,因为 DC/DC 转换器因其高功率效率而成为大多数(如果不是全部)供电方案的一部分。
系统基础芯片或 SBC 是一种集成电路 (IC),它结合了系统的许多典型构建块,包括收发器、线性稳压器和开关稳压器。虽然这些集成设备可以在许多应用中提供尺寸和成本节约,但它们并非在所有情况下都适用。
乍看上去负载开关有多种形式,包括可以用电路的板载逻辑驱动的分立 MOSFET;栅极驱动 IC 与分立 FET 相结合;以及集成控制器、栅极驱动和功率 MOS 器件。 PMOS 器件的高边开关比 NMOS 器件更容易,尽管对于给定的器件尺寸和工艺技术,NMOS 在沟道电阻方面具有优势。
具有集成功率 FET 的单芯片驱动器提供多种辅助功能,例如固定或可变压摆率控制、过流保护和欠压锁定。这些所谓的智能开关通常安装在比单独的 FET 稍大的封装中,如果我们使用分立器件实现它们,它们提供的功能往往是“部分”的。但是,与单独的驱动器和 FET 不同,使用智能开关,我们需要将控制属性和额定功率正确组合在一个部件中。
电源的输出电压通常是固定电压,但有时可能需要调整该输出电压。例如,我们可以通过调整馈入内核的电压来降低低压大电流处理器的功耗,同时保持高性能。
电流源的内阻相对负载阻抗很大,负载阻抗波动不会改变电流大小。在电流源回路中串联电阻无意义,因为它不会改变负载的电流,也不会改变负载上的电压。在原理图上这类电阻应简化掉。负载阻抗只有并联在电流源上才有意义,与内阻是分流关系。由于内阻等多方面的原因,理想电流源在真实世界是不存在的,但这样一个模型对于电路分析是十分有价值的。实际上,如果一个电流源在电压变化时,电流的波动不明显,我们通常就假定它是一个理想电流源。