聚丙烯膜电容器是有感结构,用聚丙烯作为电介质和铝箔为电极绕制而成,导线采用镀锡铜包钢线,使用环氧树脂包封。体积小,重量轻;更好稳定性和可靠性。引线直接点焊于电极,损耗小。广泛用于电视机,收录机,DVD及各种通讯器材电子仪器的直流、脉冲电路中。
设计电力电子设备的工程师发现,从储能到滤波器和去耦等多种功能都需要电容器。有不同的电容器类型可供选择,乍一看,它们的电容和电压额定值似乎相同,但性能却不尽相同。不正确的选择充其量会导致昂贵的“过度设计”的解决方案,最坏的情况是导致产品不可靠或不安全。
功率半导体是电子装置中电能转换与电路控制的核心,主要用于改变电子装置中电压和频率,及直流交流转换等。只要在拥有电流电压及相位转换的电路系统中,都会用到功率零组件。
很明显,高效率和小尺寸是 DC/DC 转换器解决方案的关键基准。作为一名系统工程师,我敏锐地意识到更高的效率是减少功率损耗、降低组件温度以及在给定气流和环境温度环境下提供更多可用功率的蓝图。然而,将解决方案压缩成一个小的 PCB 尺寸是另一个挑战。
最近,我正在研究可用于为 FPGA 供电的不同参考设计和资源。我发现一种设计是为了易于使用而创建的,使用集成电感器模块,一种是使用分立元件而具有成本效益的设计,另一种是使用 PMBus 设备制成的设计,为工程师提供了最大的灵活性来控制和监控每个轨道。尽管所有这些设计各不相同,但一个共同点是电源管理解决方案占用了相当大的电路板空间,其中包括稳压器、LDO、复位 IC、定序器、功率级等。
碳化硅 (SiC) FET 开始在 PWM(脉冲宽度调制)和 SMPS(开关模式电源)系统的固有效率已经成为优势的市场中获得关注。这项新技术的一些主要参与者展示了比之前的 IGBT 和传统 MOSFET 设计效率更高的电源系统。在夏威夷这样的地方,电费可能超过 0.35 美元/千瓦时,这一点变得很重要。在欧洲和亚洲也有类似的高电力成本需要处理。对于生活在电网之外的人来说,这也很重要。
电磁干扰(EMI)历来是让PCB设计工程师们头疼的一个问题,它威胁着电子设备的安全性、可靠性和稳定性。因此,我们在设计PCB时,需要遵循一定的原则,使电路板的电磁干扰控制在一定的范围内,达到设计要求和标准,提高电路的整体性能。
在许多无线基站应用中,隔离电源转换器的电源是通过 -48 V 电源提供的。通信基站使用-48V电源很大部分有历史原因,历史上,通信行业设备一直使用-48V直流供电。-48V也就是正极接地。因为最小的通讯网和通信工程都是用的电话网,电信局供电电压都是48V的,后期工程和端口通讯设备为了兼容早期设备,降低更换成本,基本都用的-48V的电源。
跨阻抗放大器(TIA) 最常使用运算放大器(op amps) 构建。而且,越来越多的(如果不是全部的话)模数转换器(ADC) 是全差分系统,需要具有单端差分机制。TIA由于具有高带宽的优点,一般用于高速电路,如光电传输通讯系统中普遍使用。
从表面上看,我们可能认为驱动螺线管或阀门执行器接缝非常简单。老实说,在大多数情况下确实如此。打开或关闭电流并不是很困难。但是,如果我们的应用程序需要非常快速地打开/关闭负载驱动怎么办?实现这一目标的最佳方法是什么?
您是数字隔离世界的新手吗?也许你是一个经验丰富的老手?无论您的专业水平如何,我们都可以每隔这么多时钟周期使用一次刷新。数字隔离主题是一个非常受欢迎的领域,有很多有趣的方面。如果以开放格式保留以供消费,仅基础知识就可能使您头晕目眩。在 TI,我们冒昧地将基础知识以易于理解的格式进行了阐述,并随后在此基础上进行了深入研究,深入探讨了更高级的主题。
用于测量负载电流的标准方法之一是在负载线中插入一个低阻值电阻器并检测其两端的电压,图 1,然后是欧姆定律的模拟或数字实现。
我敢肯定,我们都至少失去了一块心爱的电路板,因为工程师的最爱——ESD。因意外 ESD 撞击而损坏的电子元件和电路板每年会造成数百万美元的损失。作为工程师,我们应该采取一切预防措施来防止或尽量减少因 ESD 事件造成的损害。考虑到当今环境中存在如此多的变量,创建稳健的 ESD 设计似乎是一项艰巨的任务。然而,我们可以做很多简单的事情来将风险降到最低。在深入探讨 ESD 安全的“注意事项”之前,让我们看看是否可以揭开 ESD 测试相关术语的神秘面纱。
在系统开发过程中,我们通常不会考虑系统所需的电源。通常,实验室电源用于新系统的首次测试,例如工业温度传感器。这些只是手动打开和关闭,以简化系统测试、编写代码和进行基本调试。但随着系统组合在一起并采用其最终形式,电源必须集成到系统中。通常在这一点上,我们意识到我们的系统中有多少轨道,如果我们的轨道少一点,我们的生活会变得多么容易。这样就开始了优化系统电源架构的过程。
整流二极管的反向恢复时间是我们过去可以忽略的一个参数。当输入的交流电源为 60 Hz 且电流消耗为几安培时,微秒的反向恢复时间并不重要。现在,我们有了开关模式电源。开关频率在数百 kHz 到数 MHz 之间,电流消耗为数十或数百安培。在这种情况下,如果我们忽略此规范,后果自负。