本文旨在演示一种智能亮度控制灯的设计,该灯使用具有四个输出的可编程混合信号矩阵、工作电压高达 13.2 V 和每个输出 2 A 电流的运动传感器。该系统是使用高压宏单元和芯片内的其他内部和外部组件创建的,以与运动传感器交互。
移动电话、个人可穿戴设备以及我们家中的许多无线传感器和控制器的无拘无束世界的便利是有代价的:不断关注和管理为其供电的可充电电池。
根据国际能源署对能源和公用事业部门的一项调查,过去五年全球用电量继续以每年 3.5% 的速度持续增长。 2020 年,前 12 个国家的表观消费量估计为 16 吉瓦时,其中中国、美国和印度占总量的 60%。尽管由于大流行导致的封锁,2020 年的消费率下降了 5%,但在“V 型”复苏和被压抑的需求的推动下,预计今年将出现反弹。
我的最后一个问题是关于展望未来:您如何看待未来几年的 GaN?与 GaN 竞争的其他宽带隙材料有哪些?所以,我提到了一些关于碳化硅的事情。因此,这些天来,我们也在谈论电动汽车。那么,与其他解决方案相比,GaN 在哪些方面可以提供良好的价值?我们期望在哪里看到下一波增长?
现在讨论的一个主题是器件的热管理方面,而宽带隙半导体、氮化镓,但不仅是碳化硅解决方案,承诺更高的工作温度和更高的效率。如您所知,在将这些设备设计到系统中时,设计人员还需要考虑热管理问题。那么,您的技术战略是什么,您如何看待随着功率密度的增加而对工艺和封装技术的未来发展产生影响的热管理需求?
最新的GaN技术是把逻辑集成到 E-Mode GaN HEMT 中,因此,它可以以最少的工作量与驱动程序和控制器连接,并且还可以节省成本,因此不需要额外的组件。因此,我们的解决方案可以像 MOSFET 一样被驱动。为什么E-Mode GaN HEMT选择集成逻辑而不是 GaN 驱动器的原因是什么吗?
目前有几个 GaN 器件概念。那么,大家能告诉我从设计的角度来看,哪些是主要的,哪些是我们的发展方向?,关于GaN的十件事,有没有你更关注的点?
电动汽车的电气化之路并非没有坑洼。基础设施、高功率和标准正在减缓进展。
尼古拉特斯拉是一位富有远见的发明家和工程师,他启发了埃隆马斯克的著名电动汽车 (EV) 品牌,他在一个世纪前就预见到了无线电力传输的潜力。今天的电气工程师正在使特斯拉的愿景得以体现。感应充电,也称为无线充电,涉及通过电磁场在两个物体之间传输能量。这个概念在 1970 年代中期经过改进并应用于几个小型应用程序,正在消费者手机和电动汽车中卷土重来。
“无线充电器”。“电动汽车”。两个被广泛讨论的概念。将它们放在一个句子中,例如“让我将电动汽车连接到无线充电器?” 没那么多。
发射器和接收器谐振器线圈的设计和形状对系统性能具有关键影响。对于静态充电,发射器线圈采用扁平垫的形式,其中包含用于产生磁场的线圈和用于引导磁场的铁氧体层,以及用于屏蔽的铝层。
在 LED 照明产品首次应用于普通照明至少 10 年后,如何评估 LED 照明产品的可靠性仍然是一个持续争论的话题,有时甚至是混乱的话题。下面我们将了解一些用于可靠性设计 LED 照明系统的指标和流程。
消费物联网 (CIoT) 市场——涵盖从可穿戴健康追踪器、智能手表、儿童玩具和婴儿监视器,到烟雾探测器、门锁、智能电视和扬声器、家庭自动化和电器(仅举几例)——的所有领域——预计在未来十年内大幅增长。
德州仪器 (TI) 扩展了其高速数据转换器系列,新增了八个逐次逼近寄存器 (SAR) 模数转换器 (ADC) 系列,可在工业环境中实现高速数据采集。针对工业系统中的实时控制挑战,ADC3660 SAR ADC 具有 14 位、16 位和 18 位分辨率,采样速度范围为 10 到 125 MSPS,声称可将功耗降低 65%,将延迟降低 80%。竞争设备。
安全机制是电动汽车应用中无线充电商业化的另一个关键。MI 和 MR 技术都通过线圈传输电磁能量。当金属物体吸收电磁能时,会产生加热反应。如果检测到传输线圈上有金属异物,安全机构将停止电力传输。技术难点是如何检测线圈上的金属异物,如何在送电前检测线圈上的金属异物,以及如何在送电过程中检测两个线圈之间的金属异物侵入。