与传统的脉宽调制 (PWM) 电源转换器不同,谐振转换器的输出电压通过频率调制进行调节。因此,谐振转换器的设计方法将不同于 PWM 转换器。 LLC 谐振转换器透过设计电路产生谐振的方式,实现功率开关元件的软切换,能显著的提升转换器效率,因此广受业界喜爱。但你是否也觉得 LLC 谐振转换器的补偿难以调整,Transient Response 太慢?系统频宽太低?单纯的电压回授已经无法满足设计需求,但是受限于 LLC 无法使用峰值电流模式控制,没办法设计更优化的回授与补偿器?
为了应对工业和汽车行业日益严格的电源要求,多相设计是当今工程师的热门选择。对于超过 25A 的电流要求,越来越多的设计人员选择多相方法,因为它们具有关键优势。与单相设计相比,多相提供更低的输出纹波电压,以及更好的瞬态性能和更好的热性能,从而提高整体效率。
在本文的第 1 部分中,我讨论了交错同步降压的四个相位以最小化输入/输出电压纹波并提高热性能的必要性。您可以通过遵循一些关键布局指南来进一步提高热性能,以确保功率在所有四个相位上均匀耗散。
我们在项目中如何预计运算放大器 (op amp) 的有源模拟滤波器中的振铃?模拟滤波器的目的是去除有意频带中的信号,而不是无意中将额外的振铃添加到信号路径中。考虑查看每个滤波器级的 Q 值或品质因数。图 1 显示了二阶低通巴特沃斯滤波器的特性示例。
像许多人一样,我被那些可以用来照亮人行道的小型太阳能户外灯的便利性所吸引。毕竟,它们似乎是解决小问题的简单、无忧的解决方案。它们是基于太阳能的,它是免费的能量收集,并且没有布线。只需将它们粘在地上,问题就解决了。
在第 1 部分中,我们研究了如何从 LED 灯泡中移除 AC/DC 转换器以节省能源。第 2 部分和第 3 部分涵盖家庭照明网络和通信。在这里,我们将深入探讨太阳能、电线、连接器和灯泡设计。 你想节省能源吗?考虑太阳能物联网。这是当您的光伏太阳能系统连接到局域网并被建模为另一个提供电力的物联网设备时。在这个概念中,太阳能材料是多层层压的,如 PCB。图 11显示了太阳能层压板的侧视图。
随着车辆变得更加电气化——不仅仅是电动汽车或混合动力电动汽车,甚至是老式汽油/柴油动力机器——准确监控电流消耗以确保性能和长期可靠性变得越来越重要。这变得至关重要的一个领域是电子助力转向 (EPS) 系统。
关于 FET 数据表的问题,尤其是热信息表中的那些参数,大家不一定知道有什么作用。这就是为什么今天,我想解决数据表中结到环境热阻抗和结到外壳热阻抗的参数,这似乎是造成很多混乱的原因。 首先,让我们准确定义这些参数的含义。在热阻抗方面,很难在 FET 行业内找到这些参数命名的一致性——有时甚至在同一家公司内也是如此。为了这篇文章,我将使用图 1 和表 1 中定义的参数。如果您认为热流类似于电流,那么很容易想象出热量可以从所示结或芯片消散的电阻网络在图 1 中。这个网络的总和就是我们所说的器件的结到环境热阻抗 (R θJA )。
工程师选择关键功率元件后必须计算补偿值;这通常是通过非直观的数据表方程完成的,因此您可能不确定这些值是否正确。要确定,您需要在实验室中构建电源并测量其稳定性。 电压模式和 CM 降压转换器的不同之处在于其内部电路有些复杂。为了建模,有两个简单的模块:误差放大器和功率级增益。误差放大器查看输出电压,将其与内部参考电压进行比较,并生成误差信号。功率级增益模块是用于 VM 转换器的简单电压增益 (V/V),或用于 CM 转换器的跨导增益 (A/V)。
与 20 年前我们的手机相比,今天的车辆具有更多的智能和连接性。无论是通过基于订阅的通信服务还是内置的蜂窝功能,他们都与世界保持近乎持续的通信。未来,这将包括车对车通信。控制与外界通信的核心是远程信息处理控制单元 (TCU)。 除了在车辆行驶时发生的通信之外,还需要在车辆关闭时进行通信,例如模块固件下载、诊断上传到云服务或位置服务通知等任务。
电流检测电阻器,也称为分流器,是测量电流的首选技术。为了不对电流产生不利影响,分流器的电阻值较小,在两端产生成比例的小电压。因此,设计人员必须利用放大此小电压的电路,通过模数转换器 (ADC) 进行上游转换。 分流电阻器两端的小电压通常必须从数十或数百毫伏增加到零点几伏。此任务通常由运算放大器或电流检测放大器来执行。电流检测放大器是一种专用运算放大器,集成了激光微调的精密电阻网络,用以设置增益。通常,放大器电压增益大约为 20 到 60 级,有时甚至更大。
本文讨论了三相同步电机的不同“无传感器”启动技术,特别是这些技术如何应用于 DRV10x 系列集成电机控制器。在这个由三部分组成的博客系列中,我将讨论 TI 高性能InstaSPIN-FOC ™ 解决方案的启动选项。 三相电动机是指当电动机的三相定子绕组(各相差120度电角度),通入三相交流电后,将产生一个旋转磁场,该旋转磁场切割转子绕组,从而在转子绕组中产生感应电流(转子绕组是闭合通路),载流的转子导体在定子旋转磁场作用下将产生电磁力,从而在电机转轴上形成电磁转矩,驱动电动机旋转,并且电机旋转方向与旋转磁场方向相同。
在本系列的第一部分中,我解释了如何在InstaSPIN-FOC™中使用 ForceAngle来调节电机启动。接下来,我将讨论在启动期间产生足够的扭矩以及如何保持对齐以最大化扭矩。
我在本系列的第一部分中讨论了使用我们的 InstaSPIN-FOC™ 技术启动无传感器电机,然后在第 2 部分中讨论了如何在启动时产生足够的扭矩并在旋转电机时将其最大化。在这第三部分和在本系列的最后一部分,我将解释如何应对可能具有高达 100% 的高动态负载或额定扭矩输出的应用中的一些挑战。
车辆中 48V 电池系统的激增产生了对高精度、数十年电流测量的需求,以最大限度地提高电池管理系统 (BMS) 的效率。在本文中,我将讨论测量长达五个十年的电流时面临的挑战,并分析解决这一挑战的方法。我还将讨论其他诊断功能如何帮助您进行功能安全计算。