• 如何让过流保护能否简单而精确,同时最大限度地降低成本

    在设计任何系统时,我们通常必须设计电源以满足我们的要求。一种非常流行的解决方案是采用开关模式电源(或 SMPS),因为它们的效率非常高。然而,在保持低成本的同时设计 SMPS 非常具有挑战性,更不用说通过开关稳压器产生不稳定环路的风险了。在任何电力系统中,总是存在输出短路的风险。在这种情况下,有必要保护系统不因电流增加而损坏。

  • 了解 GaN 的电磁兼容性

    氮化镓 (GaN) 晶体管开关速度快,我检查了LMG5200半桥 GaN 驱动器,并表明它能够实现 600ps 或更短的开关上升时间。在工作台上,我测量了每纳秒 40V 的开关节点 dv/dt!这比我使用的典型 DC/DC 转换器高约 30 倍,虽然这有助于降低开关损耗,但它确实使满足电磁兼容性 (EMC) 的挑战更加困难。为什么?因为电压和电流的变化率会激活寄生电路元件,从而产生辐射和传导噪声的噪声源。

  • 确定最准确的线性稳压器

    我们肯定希望我们使用的微处理器始终保持最佳性能,想象一下,我们的微处理器的电源由一个开关模式电源和一个线性稳压器组成,这使得功耗最小。该系统的框图如下图 1 所示。

  • 如何设计安静紧凑的工业电源

    大家知道,由于在效率、集成度、灵活性上的优势,今天的电源设计中,开关稳压器的使用越来越普遍,但是噪声大、更容易产生EMI问题,则是开关稳压器天生的“短板”。 究其原因,这是因为开关稳压器工作时需要不断开关电流,这些电流通常比较大,而每当电流流动时,就会产生磁场,大电流的快速开关就会产生交变磁场;同时,由于电流路径中存在寄生电感,在开关时也会产生电压失调。可以想见,电流的变化会容性耦合到相邻的电路部件中,增加电源的噪声辐射。

  • 如何生成任意大小的电流源设计

    电流源的内阻相对负载阻抗很大,负载阻抗波动不会改变电流大小。在电流源回路中串联电阻无意义,因为它不会改变负载的电流,也不会改变负载上的电压。在原理图上这类电阻应简化掉。负载阻抗只有并联在电流源上才有意义,与内阻是分流关系。由于内阻等多方面的原因,理想电流源在真实世界是不存在的,但这样一个模型对于电路分析是十分有价值的。实际上,如果一个电流源在电压变化时,电流的波动不明显,我们通常就假定它是一个理想电流源。

  • 如何实现电压监控的四种方法

    为什么监控电压很重要?我们知道监控电压轨可以帮助我们防止掉电、检测过压事件、测量电池电量并帮助我们实施整体诊断策略。本文将介绍如何实施电压监控。有四种关键方法:

  • 如何使用 Fly-Buck™ 转换器设计 EMC 和隔离

    设计合理的Fly-Buck ™电路因其易用性、小解决方案尺寸、电流隔离、宽输入电压范围和低总体材料成本而得到证明,既方便又不可或缺。 例如,可编程逻辑控制器 (PLC) 、现场变送器、传感器和过程仪表、工业通信、人机界面 (HMI)和基于 IGBT 的电机驱动器都具有非常适合 Fly-Buck 电路的独特电源解决方案要求。随着要求严苛的隔离应用的实现,符合监管规范是越来越重要的电源解决方案基准。例如,IEC 61000-4 系统级 EMC规范中的各种测试与低频和高频干扰(ESD、EFT/突发、雷电浪涌以及传导和辐射射频抗扰度)有关。

  • 如何使用 LDO 保护电源

    设计人员经常面临保护电源免受突然短路或持续高电流消耗的挑战,因为负载在许多工业和汽车应用中的行为可能无法预测。低压差 (LDO) 稳压器通常为这些负载供电,但没有内置保护。在这篇文章中,我们将讨论一个有效增加 LDO 稳压器阻抗的概念,从而保护输入免受不可预测的负载条件的影响。

  • 如何使用逻辑电平 UVLO 控制稳压器的开启关闭阈值

    使用稳压器时,转换器经常会在其输入电压达到可接受的设计水平之前尝试调节输出。因此,在这种情况下,转换器将需要来自电源的更多电流,从而可能会限制电源的电流。此外,由于稳压器的占空比可能处于最大值,因此在此操作时刻的输出电压可能超出规格。为避免这种情况,我们可以使用欠压锁定电路 (UVLO) 来设置转换器开启和关闭的特定输入电压阈值。

  • 如何在 PMIC 周围放置无源元件以优化 PCB 布局

    功率一直是大多数设计人员在板上布线的挑战。设计人员面临着功率密度、元件布局、选择印刷电路板 (PCB) 层数和信号之间的交叉耦合等方面的挑战。由于将许多电源复杂地集成到单个封装中,PCB 设计可能会更加困难。但是您可以通过遵循一些规则来缓解挑战。

  • 没有一个合适的通用低压直流连接器,导致设备电源线太杂乱

    我在当地的汽车经销商处进行一些日常工作,并利用他们为喜欢在汽车修好时等待的客户提供的半私人隔间。(那些没有工作可做或只是想打发时间的人可以选择坐在舒适的剧院座位上,观看 54 英寸电视,播放从最近的电影到杰瑞·斯普林格(Jerry Springer)节目的任何内容——但我不知道谁控制着频道调谐器。)

  • 用于空间应用的 GaN 电源设计的问答

    与需要定制制造工艺和封装以使半导体免受辐射影响的硅不同,氮化镓 (GaN) 器件由于物理特性和结构而在很大程度上能够抵抗辐射造成的损坏。 这些属性可以在卫星设计中加以利用。轨道电子必须承受伽马射线、中子和重离子的影响。质子占 空间辐射的 85% ,而较重的原子核占其余部分。辐射会恶化,中断敲除卫星电子元件。

  • 专有 ACDC 适配器:好主意还是讨厌的把戏?

    我最近从戴尔购买了一台替换笔记本电脑,很高兴看到它的 AC/DC 电源适配器与两台现已停产的戴尔笔记本电脑(19.5 V,2.3 A/45 W)的额定值相同。我想这会很方便,因为我现在可以将一个适配器留在办公室,然后将另一个放在我的旅行包中。第一个出门不用拔掉打包,回来就反过来。这没什么大不了的,但它是一个不错的小改进和节省时间(并且避免了“哎呀,我忘了打包”综合症)。

    电源AC/DC
    2022-04-20
    电源 AC/DC
  • 用于下一代电力电子的 GaN 出现

    荷兰芯片制造商Nexperia赞助的最近行业活动的参与者表示,汽车、消费和航空应用中的功率转换等应用正在利用氮化镓 (GaN)技术的优势。 例如,Kubos Semiconductor 正在开发一种称为立方 GaN 的新材料。“它是立方氮化镓,我们不仅可以在 150 毫米及以上的大型晶圆上生产它,而且还可以扩展到更大的晶圆尺寸,并可以无缝插入现有的生产线,”Kubos 首席执行官 Caroline 说奥布莱恩。

  • 美国佐治亚理工学院为 5G 准备“无线电网”

    佐治亚理工学院的研究人员设计了一种新颖的方法来收集 28GHz 的 5G 频率来为物联网节点供电,实际上将它们变成了“无线电网”。 开发了基于 Rotman 透镜的整流天线(称为 rectenna),使其可以通过 3D 打印在柔性基板上生产,从而轻松集成到物联网节点中。

发布文章