目前现有的测磁仪,采样使用的A/D大多为10位A/D,这使得其采样精度低,测量误差大,而且抗干扰能力差。CPU大都以单片机为主,供电电源为5 V,控制器功耗比较大;主频低使得指令执行周期长,计算速度慢,在一个工频周期内的采样点数少。在环境恶劣的工业现场,由于其传感器、放大器及隔离器件本身的技术原因,性能相对较差,容易受到干扰。而且现有测磁仪的功能大都比较简单,通常以单通道为主,外加一个霍尔传感器,一般只能测量试品外壁某一点的磁感应强度,对于铁芯内部等传感器无法到达的部位不能进行测量。显示终端主要以LED为主,一般只显示当前测量点的磁感应强度,在整个测量过程中没有数据记录功能,需要专人负责填写,使用起来很不方便。
目前现有的测磁仪,采样使用的A/D大多为10位A/D,这使得其采样精度低,测量误差大,而且抗干扰能力差。CPU大都以单片机为主,供电电源为5 V,控制器功耗比较大;主频低使得指令执行周期长,计算速度慢,在一个工频周期内的采样点数少。在环境恶劣的工业现场,由于其传感器、放大器及隔离器件本身的技术原因,性能相对较差,容易受到干扰。而且现有测磁仪的功能大都比较简单,通常以单通道为主,外加一个霍尔传感器,一般只能测量试品外壁某一点的磁感应强度,对于铁芯内部等传感器无法到达的部位不能进行测量。显示终端主要以LED为
本论文介绍了脑电信号处理系统设计的两种基本方法及其优缺点,分析了DSP尤其是TMS320LF2407的主要特点,阐述了基于TMS320LF2407DSP的16通道脑电信号处理系统的硬件和软件的实现方法。
本论文介绍了脑电信号处理系统设计的两种基本方法及其优缺点,分析了DSP尤其是TMS320LF2407的主要特点,阐述了基于TMS320LF2407DSP的16通道脑电信号处理系统的硬件和软件的实现方法。
本系统采用先进的DSP技术,以TI公司的TMS320LF2407为主控制器,完成馈线终端单元的研究与设计。
本系统采用先进的DSP技术,以TI公司的TMS320LF2407为主控制器,完成馈线终端单元的研究与设计。
本系统采用先进的DSP技术,以TI公司的TMS320LF2407为主控制器,完成馈线终端单元的研究与设计。
本文着重介绍了DSP芯片的SPI同步串行接口及SPI与语音转换芯片AD50的通信方式,给出了硬件电路设计。
本文着重介绍了DSP芯片的SPI同步串行接口及SPI与语音转换芯片AD50的通信方式,给出了硬件电路设计。
利用Embedded Targetfor T1 C2000 DSP工具包,设计DSP的ADC转换程序;利用Simulink的数字信号处理工具包,设计FIR滤波嚣进行滤波处理;给出在修改生成的C语言程序时如何使DSP能正确运行。
利用Embedded Targetfor T1 C2000 DSP工具包,设计DSP的ADC转换程序;利用Simulink的数字信号处理工具包,设计FIR滤波嚣进行滤波处理;给出在修改生成的C语言程序时如何使DSP能正确运行。