关闭

通信技术

所属频道 通信技术
  • 一种改进型的CMOS电荷泵锁相环电路

    在现代通信及电子系统中,锁相环(Phase-Locked Loop, PLL)是一种重要的频率同步与控制技术。CMOS电荷泵锁相环(Charge Pump Phase-Locked Loop, CPPLL)因其开环增益大、捕获范围宽、捕获速度快、稳定度高和相位误差小等优势,被广泛应用于无线通信、时钟恢复及频率合成等领域。然而,传统CMOS电荷泵锁相环电路存在电流失配、电荷共享和时钟馈通等问题,这些问题限制了其性能和应用范围。本文设计了一种改进型的CMOS电荷泵锁相环电路,通过优化电荷泵电路和增加开关噪声抵消电路,有效解决了上述问题,并扩展了锁相环的锁频范围。

  • 定时决定一切:如何使用部分PLL创建调制波形

    在现代电子技术中,频率调制是一项至关重要的技术,尤其在雷达、通信和信号处理等领域。随着技术的不断进步,对于波形生成的精度和灵活性要求也越来越高。本文将深入探讨如何利用部分锁相环(PLL)来创建调制波形,特别是在需要精确频率扫描的应用中,如雷达系统。

  • 模数片上集成的技术特点和应用优势

    随着科技的飞速发展,电子设备的普及与功能的日益丰富,能源消耗问题日益凸显。在追求高效、可持续的能源利用背景下,模数转换(Analog-to-Digital Conversion, ADC)技术的片上集成在节能领域正扮演着日益重要的角色。本文将从模数片上集成的技术特点、应用优势以及未来发展趋势等方面,探讨其在节能领域中的重要作用。

  • FPGA数学运算中的除法运算:多种实现方式探索

    在FPGA(现场可编程门阵列)的数学运算体系中,除法运算作为一种基本的算术操作,广泛应用于各种数字信号处理、图像处理及科学计算等领域。然而,与加、减、乘等运算相比,除法运算在FPGA中的实现更为复杂,需要更多的硬件资源和设计考虑。本文将深入探讨FPGA中除法运算的多种实现方式,分析其原理、优缺点及适用场景。

  • FPGA图像处理实战:VGA接口与时序详解

    在FPGA图像处理领域,VGA(Video Graphics Array)接口作为一种经典的视频传输标准,因其成本低、结构简单、应用灵活而广泛应用。本文将深入探讨FPGA中VGA接口的工作原理、时序参数以及相关的实现方法,为FPGA图像处理实战提供详尽的技术指导。

  • FPGA图像处理实战:RGB与YUV互转

    在数字图像处理领域,颜色空间的转换是一项基础且重要的技术。RGB(红绿蓝)和YUV(或YCbCr)是两种常用的颜色空间,它们各自具有不同的特性和应用场景。RGB颜色空间通过红、绿、蓝三个颜色分量的叠加来产生其他颜色,而YUV颜色空间则是由一个亮度分量Y和两个色度分量U(Cb)、V(Cr)组成,这种分离使得YUV在视频压缩和处理中具有优势。本文将详细介绍在FPGA平台上实现RGB与YUV互转的方法和技术。

  • FPGA图像处理实战:YUV444与YUV422互转

    在现代图像处理与视频传输领域,YUV颜色空间因其独特的优势被广泛应用。YUV颜色空间将图像的亮度信息(Y)与色度信息(U和V)分离,这种分离不仅有助于节省带宽,还能在不显著降低图像质量的前提下进行高效的压缩和传输。在FPGA(现场可编程门阵列)图像处理系统中,实现YUV444与YUV422格式的互转是一个重要的技术挑战。本文将详细介绍YUV444与YUV422的基本概念、存储方式以及基于FPGA的互转实现方法。

  • FPGA图像处理实战:彩色图像灰度化

    在图像处理领域,彩色图像灰度化是一项基础且广泛应用的技术。灰度化过程将彩色图像转换为灰度图像,即图像中的每个像素点仅由一个亮度值表示,而不再包含颜色信息。这一转换不仅简化了图像处理的复杂度,还广泛应用于图像增强、特征提取、图像压缩等多个领域。在FPGA(现场可编程门阵列)平台上实现彩色图像灰度化,凭借其并行处理能力和高效性,成为图像处理领域的一个重要研究方向。

  • FPGA图像处理实战:图像灰度二值化

    在图像处理领域,灰度二值化是一项至关重要的技术,它能够将灰度图像转换为仅包含黑白两种颜色的二值图像。这一转换不仅简化了图像的复杂度,还极大地方便了后续的图像分析和处理。在FPGA(现场可编程门阵列)平台上实现图像灰度二值化,凭借其高速并行处理能力和灵活性,成为图像处理系统设计的优选方案。

  • 设计抗混叠滤波器的三大核心指导原则

    在数字信号处理领域,抗混叠滤波器(Anti-Aliasing Filter)扮演着至关重要的角色。它们的主要职责是在模拟信号被采样转换成数字信号之前,滤除高于奈奎斯特频率(Nyquist Frequency,即采样率的一半)的频率成分,以防止这些高频成分在采样过程中发生混叠(Aliasing),进而影响数字信号的准确性和可靠性。设计一个高效、合适的抗混叠滤波器,需要遵循三大核心指导原则,这些原则不仅关乎滤波器的性能,还直接影响到整个信号处理系统的质量和效率。

  • UART协议的工作原理及其波特率设置

    UART(Universal Asynchronous Receiver/Transmitter,通用异步收发传输器)是一种广泛使用的异步串行通信协议。它允许数据在发送端和接收端之间通过单根或多根线进行传输,是许多嵌入式系统和计算机与外部设备通信的基础。

  • IIC协议中的设备地址识别机制

    在现代电子系统中,IIC(Inter-Integrated Circuit,也称为I2C)协议作为一种广泛应用的串行通信协议,扮演着连接各种集成电路(IC)和设备的关键角色。IIC协议不仅支持多个从设备共享同一通信线路,还通过独特的地址机制确保主设备能够准确识别并与特定的从设备进行通信。本文将深入探讨IIC协议中如何通过地址来识别不同的从设备,并阐述其工作原理和重要性。

  • RapidIO协议在高性能计算中的低延迟通信实现

    随着信息技术的飞速发展,高性能计算(HPC)领域对数据传输速度和通信延迟的要求日益提高。在这一背景下,RapidIO协议以其高性能、低延迟的特性,在高性能计算领域发挥着越来越重要的作用。本文将深入探讨RapidIO协议在高性能计算中如何实现低延迟通信,并分析其关键技术优势和应用前景。

  • IrDA协议:红外无线通信的工作原理及其与RF技术的对比

    在无线通信技术的广阔领域中,IrDA(红外数据协议)以其独特的方式和应用场景脱颖而出。作为一种利用红外光进行数据传输的协议,IrDA在短距离、低功耗的无线通信中发挥着重要作用。本文将深入探讨IrDA协议的工作原理,并将其与使用无线电频率(RF)的无线通信技术进行对比,以揭示两者之间的主要差异。

  • IrDA协议在无线通信中的工作原理及其与RF无线通信的差异

    在无线通信技术的广阔领域中,IrDA(Infrared Data Association)协议以其独特的方式占据着重要的一席之地。作为首个实现无线个人局域网(PAN)的技术,IrDA协议通过红外光作为传输媒介,实现了设备间的短距离、低功耗通信。本文将深入探讨IrDA协议的工作原理,并分析其与使用无线电频率(RF)的无线通信技术的不同之处。