LLC谐振电路是常用的拓扑,广泛应用在目前的热门应用中,本文主要从典型谐振状态来分析其基本工作过程,后续我们将逐步扩展到其它工作状态。
运放是模拟电源反馈及各种信号调理电路常用的器件,根据输入信号连接到运放的同相端还是反相端,我们可以将其分为同相输入放大电路,和反相输入放大电路。这两种放大电路有什么区别呢,或者有什么优缺点呢?本文就这一基本话题进行讨论。
通常的认识中,峰值电流模式控制中,电源设计者普遍都清楚有一个次谐波震荡的问题,了解斜坡补偿的重要意义,但是对功率级传递函数的影响,斜坡补偿和博德图的关系,这些方面并非所有读者都是清楚的,本文主要就这一话题进行深度探讨。
本文以电压模式BUCK电路为例,从数字电源的基本原理说起,先介绍一下数字控制的系统框图,从信号流的角度去概括性的描述每一个模块的主要作用,如图1所示。
根据前述文章,数字电源之我见(1)典型控制系统框图 中的介绍,控制一个数字电源,首要的一步就是要将模拟信号转换为数字信号,这部分工作由芯片内的ADC来完成,本文就ADC的典型结构及时钟分配,和分辨率特点,基本工作原理等特性做一个概括性的介绍。
前述文章,峰值电流模式控制BUCK电路功率级电路计算及仿真 ,其中讨论了BUCK变换器功率级小信号频域分析,BOOST变换器是基本DC/DC变换器中的另一种形式,它可以实现输入电压到输出电压的升压变换,具有比较广泛的应用,对BOOST变换器的控制是设计BOOST电路的核心部分,首先我们需要对功率级电路的小信号传递函数比较了解,才能进行控制环节的设计,本文通过详细计算BOOST变换器功率级的小信号传递函数的特性,进而通过SIMPLIS软件仿真进行验证,作为后续BOOST电路的数字化变换的基础。
前述文章,峰值电流模式BOOST变换器功率级小信号频域特性分析 ,我们详细探讨了峰值电流模式的功率级电路的小信号频域特性,本文通过简要设计,对其进行闭环补偿控制。同样,我们先在Mathcad中进行基本计算,之后将结果在SIMPLIS中进行验证。
根据前述文章,我们理解了BOOST变换器的功率级小信号特性曲线,进而采用模拟运放搭建的补偿器进行补偿的方式,设计了一个闭环稳定的峰值电流模式控制的BOOST变换器,本文重点讨论一下在设计数字补偿器时的一个方法,即通过仿真的方式得到功率级传递函数BODE图,并结合数字补偿器的设计结果,对二者进行叠加从而得到开环传递函数的BODE图,在没有环路测试设备时,这是一种可行的方式。
dsPIC33CH/dsPIC33CK系列数字电源控制器芯片,在目前诸多典型应用中都得到了广泛使用。在闭环控制中,尤其是电压模式控制中,对PWM数据寄存器进行实时更新是必要的一个动作,本文主要就这一话题做一些分析和讨论