关闭

线性电源

所属频道 电源
  • 原创

    TI锂电池充电管理IC介绍,BQ25170和BQ25170-Q1

    BQ25170 是一款集成式 800mA 线性充电器,适用于针对空间有限的便携式应用的 1 节锂离子、锂聚合物和 LiFePO 4电池。该设备具有为电池充电的单个电源输出。系统负载可以与电池并联,只要平均系统负载不会阻止电池在安全定时器持续时间内完全充电。当系统负载与电池并联时,充电电流在系统和电池之间共享。

  • 原创

    应用占空比来控制电源是否工作,以节省设备电力

    关闭非活动电路可以节省大量电力;然而,这种电源管理假设有一个主动管理的“大脑”(通常是一个微控制器),它知道何时打开和关闭电源。在以亚微安级运行的极低功耗系统中,可能需要让微控制器保持在深度睡眠模式,而让一个简单的超低功耗时钟电路定期唤醒。

  • 原创

    LDO、开关稳压器得到一些应得的基本面的关注

    有时我觉得 IC 供应商在电源稳压器 IC(无论是低压差 (LDO) 还是切换器)中封装了惊人的良好性能和有用功能方面所取得的成功对他们不利。 为什么?由于做得如此出色,这些关键组件通常没有得到应有的关注、考虑或尊重。毕竟,如果没有这些稳压器,大多数设计都会陷入困境,试图在具有错误本地特性(标称电压、噪声、精度、配置等)的电源轨上正常工作,即使板上有足够的大功率可用.

  • 原创

    使用准谐振和谐振转换器提高设备电源的效率

    更高的能源成本、环境问题和可持续性能源问题正在推动欧盟 (EU) 和其他各种监管机构专注于减少电子设备浪费的能源。交流输入电源是这种浪费能源的主要来源,无论是在重负载下还是在待机状态下。

  • 原创

    低静态电流 PMIC 有助于延长电池寿命

    当今电子设计中最关键的挑战之一是降低能耗。电源管理是许多设备的重要设计考虑因素,尤其是那些依赖电池运行的设备。因此,大多数系统使用各种电源管理操作模式。

    电源
    2022-10-12
  • 原创

    超低静态电流电源芯片提供更长的电池寿命

    当今电子设计中最关键的挑战之一是降低能耗。电源管理是许多设备的重要设计考虑因素,尤其是那些依赖电池运行的设备。因此,大多数系统使用各种电源管理操作模式。

  • 原创

    了解传导产生的EMI电磁干扰问题

    电磁干扰是我们生活的一部分。许多人认为电子产品的普及是一件好事,因为它们提高了我们的舒适度、安全性和健康度。这些产品还带来了潜在的电子有害 EMI 信号。EMI 信号可以来自各种来源,包括我们周围常见的电子设备,以及车辆和重型设备。在汽车设计中,其中一些 EMI 发生器与车辆的敏感电子电路位于同一个机柜中。这种接近会影响音响设备、自动门控制和其他设备。

  • 原创

    阻止 EMI 在 EV 设计中传播

    长期以来,电磁兼容性 (EMC) 一直是设计工程师的祸根,它仍然是电动汽车 (EV) 和混合动力电动汽车和 (HEV) 系统的主要关注点。传统的内燃机 (ICE) 车辆本质上主要是机械式的,电子设备用螺栓固定在机械动力装置上。然而,电动汽车和混合动力汽车有很大不同。

  • 原创

    适当的布局和元件选择控制电源 EMI(4)

    如果存在电场发射,则可能的罪魁祸首是系统中的最高电位。在电源和开关稳压器中,我们应该注意开关晶体管和整流器,因为它们通常具有高电位,并且还可能由于散热而具有较大的表面积。表面贴装设备也可能存在这个问题,因为它们通常需要大量的印刷电路板铜来散热。在这种情况下,我们还应该注意任何大面积散热层与接地层或电源层之间的电容。

  • 原创

    适当的布局和元件选择控制电源 EMI(3)

    对于一些需要尽可能低的输出噪声的应用,使用线性稳压器的效率不足是不可接受的。在这些情况下,后置线性稳压器的开关稳压器可能是合适的。后置稳压器可衰减开关稳压器产生的高频噪声,从而使噪声性能接近单独的线性稳压器。由于大多数电压转换发生在开关稳压器中,因此效率损失远小于单独线性稳压器的损失。

  • 原创

    适当的布局和元件选择控制电源 EMI(2)

    为了说明开关稳压器的操作,请考虑一个典型的同步整流降压转换器。在正常运行期间,当高端开关 Q 1导通时,电路将电流从输入端传导到输出端,当 Q 1 关断且同步整流器 Q 2导通时,电流 继续通过电感器传导 。电流和电压波形的一阶近似值错误地假设所有组件都是理想的,但本文稍后将介绍这些组件的寄生效应。

  • 原创

    适当的布局和元件选择控制电源 EMI(1)

    大多数便携式设备都包含稳压器或其他形式的电源,并且与较小的光刻 IC 相关的较低电源电压也要求在许多非便携式设备中使用这些电源电路。尽管许多设计人员并不完全了解这些权衡取舍,但这些权衡取舍会对电池寿命、符合 EMI/EMC 法规以及所设计产品的基本操作产生重大影响。了解稳压器类型、电路拓扑、相关组件和布局对于控制电源 EMI 至关重要。

  • 原创

    我需要关闭那个有噪声的开关电源吗?

    提到“切换电源”,前两个本能的相关反应是术语“高效”和“嘈杂”。相反,如果说“LDO”(低压差稳压器),则会使用相反的描述性术语:“低效”和“安静”。不可否认,这些陈词滥调是真实的,但要小心并确认它们:就像大多数陈词滥调一样,在某些条件和情况下也有例外。

    电源
    2022-09-05
  • 原创

    为我们的 MSP430 应用设计更小电源电路

    因此,假设我们几乎完成了最新最好的MSP430应用程序。所有的错误都已被根除,它的工作就像一个魅力。它几乎准备好进入主舞台,但仍有一件事需要注意:电源。毕竟,我们不能指望每个人都用实验室电源为他们的应用程序供电,对吧?

    电源
    2022-08-18
  • 原创

    了解线性稳压器

    长期以来,线性稳压器一直得到业界的广泛采用。在开关模式电源于上世纪60年代后成为主流之前,线性稳压器曾经是电源行业的基础。即使在今天,线性稳压器仍然在众多的应用中广为使用。 线性稳压器将未调节的直流电压转换为已调节的直流电压。它们是开始电压调节器研究的好工具,因为有了它们,线性稳压器将出色的调节特性与出色的噪声性能和使用简单性结合在一起,但它们的低效率和高压差电压略微抵消了这些优势。