在当今电子设备快速发展的时代,充电技术成为了人们关注的焦点。高压大电流直充和快充协议充电是两种常见的充电方式,它们在充电原理、设备要求、充电速度、安全性以及对电池寿命的影响等方面存在着显著的区别。
在现代电子设备中,锂电池作为一种高效、便携的能源存储解决方案得到了广泛应用。然而,锂电池在使用过程中面临着诸多潜在风险,如过流和短路情况,这可能导致电池过热、损坏甚至引发安全事故。锂电池保护芯片应运而生,其对于过流电流和短路电流的监测与控制能力成为保障锂电池安全稳定运行的关键因素。
本文深入探讨了反激式开关电源中次级整流二极管过热的问题。首先介绍了反激式开关电源的工作原理以及次级整流二极管在其中的作用,详细分析了导致二极管过热的多种因素,包括二极管选型不当、电流过大、散热不良、反向恢复特性不佳以及电路设计不合理等。针对这些问题,提出了相应的解决措施,如合理选型、优化电路设计、加强散热管理等,并结合实际案例进行了说明,旨在为电子工程师解决这一常见问题提供全面的理论与实践指导。
本文深入探讨了开关电源并联输出电感啸叫问题。首先介绍了开关电源的基本工作原理以及电感在其中的作用,详细分析了导致电感啸叫的多种因素,包括电感饱和、电流纹波、开关频率及其谐波、机械共振等,并结合理论与实际应用,提出了一系列有效的解决措施,旨在为电子工程师解决这一常见问题提供全面的指导和参考。
在电力电子领域,拓扑结构的选择对于电源系统的性能和效率至关重要。LCC(电感电容耦合谐振变换器)和 LLC(电感电容电感谐振变换器)是两种常见的拓扑结构,它们在许多应用场景中展现出独特的优势。随着高压应用需求的不断增长,深入了解这两种拓扑结构的特点和区别,对于选择合适的拓扑以实现高效、稳定的高压电源系统具有重要意义。
随着可再生能源和电力电子技术的发展,单相逆变器在光伏发电、风能发电、储能系统等应用中发挥着不可或缺的作用。逆变器的主要功能是将直流电源(如光伏电池板)转换为交流电源,以便供给家庭或电网使用。在这个过程中,调制方法的选择对逆变器的效率具有显著影响。本文将深入探讨单相逆变器的调制方法,并重点分析何种调制方法可以达到最高效率。
随着移动设备的普及和快速发展,对充电速度的要求越来越高。快充技术不断演进,其中 PD(功率传输协议)快充成为主流。在 PD 快充系统中,VBUS(电压总线) MOS 管起着关键作用。它不仅影响着充电的效率和安全性,还对整个系统的性能有着重要影响。
在电子电路中,变压器降压后整流是常见的电源处理方式。电解电容在其中起着关键作用,其值的选择直接影响到电源的稳定性、纹波大小以及电路的性能。合理选择电解电容值对于确保电路正常运行至关重要。
推挽升压电路在各种电子设备中广泛应用,它能够将输入的直流电压转换为较高的直流电压。然而,在实际运行过程中,MOS 管发热严重的问题常常困扰着工程师们。这不仅影响电路的性能和稳定性,还可能导致设备故障。因此,深入分析 MOS 管发热的原因具有重要意义。
传导辐射干扰(Conducted Emission Interference)是现代电子设备在工作过程中普遍面临的一种干扰现象。它是指电磁噪声通过电源线或信号线等导体传播,从而影响其他设备的性能和稳定性。随着电子设备的广泛应用,尤其是无线通信、自动化控制和智能家居等领域,如何有效降低传导辐射干扰,成为了设计工程师和技术人员需要面对的重要挑战。本文将介绍一些实用的小技巧,以帮助有效降低传导辐射干扰。
在 CMOS 和宽带隙半导体技术的进步中,您很容易忘记 William Shockley 于 1949 年发明的第一个晶体管是双极结型晶体管 (BJT)。尽管它们已经不再流行,但这些不起眼的设备仍然在各种类型的电子设备中大量高效可靠地运行。事实上,在某些应用中,BJT 的性能可以超越更杰出的 CMOS 同类产品。 BJT 技术的最新改进将使它们成为半导体技术领域的重要组成部分。
反激式转换器具有众多优点,包括成本最低的隔离式电源转换器、轻松提供多个输出电压、简单的初级侧控制器以及高达 300W 的功率传输。反激式转换器用于许多离线应用,从电视到手机充电器以及电信和工业应用。它们的基本操作可能看起来令人生畏,而且设计选择很多,特别是对于那些以前没有设计过的人来说。让我们看看 53 VDC 至 12V、5A 连续导通模式 (CCM) 反激式的一些关键设计注意事项。
英飞凌的单片双向 GaN HEMT 基于其 CoolGaN 技术,代表了电力电子领域的一项非凡创新,特别是在实现单级功率转换方面。这些 BDS 有助于开发具有更少组件、更低成本和简化设计的转换器,与传统两级方法相比具有显着优势。
氮化镓(GaN)基功率半导体在功率转换方面具有许多优势。它们在许多应用中的使用不断增加,例如移动设备的电源适配器和数据中心的电源。横向高电子迁移率晶体管 (HEMT) 是应用最广泛的 GaN 器件。该器件的退化机制已被广泛研究并被纳入可靠性测试标准。
碳化硅 (SiC) MOSFET 因其技术固有的特性(例如高电压能力、较低的导通电阻、耐高温操作以及相对于硅更高的功率密度)而越来越受到电源系统设计人员的欢迎。因此,基于 SiC 的转换器和逆变器是电池供电车辆 (BEV)、可再生能源以及需要最高效率的所有其他应用的最佳选择。