芯片技术的局限
扫描二维码
随时随地手机看文章
随着芯片尺寸的进一步缩小,新的“物理极限”出现了。这就是我们传统计算机芯片的设计理念问题。我们都知道的,现在的电脑是基于数字电路0、1这样的逻辑电路搭建起来的。而随着芯片尺寸的减小,最小的PN结也在不断的减小。由于量子效应,PN结不能形成之前的工作状态,也就是说,不再表现出0和1这种状态,量子效应成为了数字集成电路的拦路虎。
这怎么办呢?其实,需要的不是做新的PN结出来,因为PN结已经无法再小了。科学家们做的工作是,发展下一代计算机技术:量子计算机。这种计算机的工作原理跟我们现在的计算机是不同,它是利用量子的波函数来进行计算的。它的计算逻辑不同於数字电子计算机,量子计算用来存储资料的对象是量子位元,它使用量子演算法来进行资料操作。
这种变化其实就是新的技术手段代替老的技术手段的过程。面对无法再小的数字化集成电路科学家祭出的新的手段就是量子计算,用量子计算来取代数字计算,让计算能力进入到一个新的发展阶段。
还有就是目前,芯片都是由硅为基础,在上面刻蚀电路,但是,理论研究表明,当芯片制程达到1nm的时候,量子隧穿效应,就是电子不受控制,所以这是人们很担心的问题,1nm后怎么办?目前人类马上将硅基材料的性能压缩到了极限,所以更换材料已经被提上日程,目前最有希望的便是二硫化钼(MoS2)。
硅和二硫化钼都有晶体结构,但是二硫化钼对于控制电子的能力要强于硅,众所周知,晶体管由源极,漏极和栅极,栅极负责电子的流向,它是起开关作用,在1nm的时候,栅极已经很难发挥其作用了。而通过二硫化钼,则会解决这个问题,而且二硫化钼的介电常数非常低,可以将栅极压缩到1nm完全没有问题。
1nm是人类半导体发展的重要节点,可以说,能不能突破1nm的魔咒,关乎计算机的发展,虽然二硫化钼的应用价值非常大,但是,目前还在早期阶段,而且,如何批量生产1nm的晶体管还没有解决,但是,这并不妨碍二硫化钼在未来集成电路的前景。
当前,芯片由先进制程带来的性能、功耗回报正在显著降低。近几个月,搭载5nm制程工艺SOC的智能手机陆续上市。从这些手机的实际表现来看,无论是台积电的5nm FinFET工艺,抑或三星的5nm LPE工艺,性能、功耗提升都未能满足市场预期。
三星方面,功耗翻车的问题比较突出。采用三星5nm LPE工艺的骁龙888处理器和上代产品骁龙865处理器对比,单核功耗和多核功耗明显增加,能效表现上大幅下降。
台积电方面,快步推进的5nm,实际性能提升有些拉胯。以苹果A系列处理器为例,同样基于台积电7nm制程,A13处理器相比A12处理器CPU性能提升20%、GPU性能提升20%;而基于台积电5nm制程的A14相比A13,CPU 性能方面提升大约在16.7%左右,GPU性能提升则大约在8.3%左右。
也就是说,在苹果A系列处理器上,5nm制程进步带来的进步,很可能还比不上苹果自己对处理器架构的优化升级。虽然有一些业内人士猜测,这是由于5nm初期良品率不高,苹果A14屏蔽了一些核心。但同样采用台积电5nm工艺的麒麟9000,其功耗控制较之官方数据也存在较大差异。
5nm先进制程工艺的实际表现普遍称不上令人满意,对于当前阶段使用5nm工艺的产品而言,其营销价值或许要远远超过先进制程本身的实用价值。
更加令人感到不安的是,在当前台积电5nm制程工艺的实用价值都很成问题的情况下,台积电还在持续加大对下一代制程节点3nm工艺的研发投入。在近日的财报会议上,台积电管理层宣布2021年计划将年度资本开支从2020年的170亿美元大幅提升到250亿至280亿美元,增幅将达到45%至63%,其中约80%将用于3nm工艺研发,这意味着,台积电今年将会有超过150亿美元的资本支出投向3nm工艺。
而根据台积电此前公布的计划,他们的3nm工艺,计划在今年风险试产,2022年大规模量产。也就是说,按照台积电的规划,明年在市场上我们就可以看到一些搭载台积电3nm工艺的产品。
这依然符合台积电近几年来的先进制程升级换代节奏,然而从产品的实际表现来看,高昂的代价并没能完美实现预期中的效果。换而言之,台积电现在很可能已经触碰到了资本投入和技术实现之间的一个瓶颈,忽视这一瓶颈而又急切想要实现3nm先进制程工艺的台积电,其实已经陷入了一场极限技术冒险。