当前位置:首页 > 技术学院 > 基础知识科普站
[导读]CISC早期的计算机部件比较昂贵,主频低,运算速度慢。为了提高运算速度,人们不得不将越来越多的复杂指令加入到指令系统中,以提高计算机的处理效率,这就逐步形成复杂指令集计算机体系。

CISC早期的计算机部件比较昂贵,主频低,运算速度慢。为了提高运算速度,人们不得不将越来越多的复杂指令加入到指令系统中,以提高计算机的处理效率,这就逐步形成复杂指令集计算机体系。为了在有限的指令长度内实现更多的指令,人们又设计了操作码扩展。然后,为了达到操作码扩展的先决条件——减少地址码,设计师又发现了各种寻址方式,如基址寻址、相对寻址等,以最大限度地压缩地址长度,为操作码留出空间。Intel公司的X86系列CPU是典型的CISC体系的结构,从最初的8086到后来的Pentium系列,每出一代新的CPU,都会有自己新的指令,而为了兼容以前的CPU平台上的软件,旧的CPU的指令集又必须保留,这就使指令的解码系统越来越复杂。CISC可以有效地减少编译代码中指令的数目,使取指操作所需要的内存访问数量达到最小化。此外CISC可以简化编译器结构,它在处理器指令集中包含了类似于程序设计语言结构的复杂指令,这些复杂指令减少了程序设计语言和机器语言之间的语义差别,而且简化了编译器的结构。

复杂指令集的发展史

为了支持复杂指令集,CISC通常包括一个复杂的数据通路和一个微程序控制 CISC器。微程序控制器由一个微程序存储器、一个微程序计数器(MicroPC)和地址选择逻辑构成。在微程序存储器中的每一个字都表示一个控制字,并且包含了一个时钟周期内所有数据通路控制信号的值。这就意味着控制字中的每一位表示一个数据通路控制线的值。例如,它可以用于加载寄存器或者选择ALU中的一个操作。此外每个处理器指令都由一系列的控制字组成。当从内存中取出这样的一条指令时,首先把它放在指令寄存器中,然后地址选择逻辑再根据它来确定微程序存储器中相应的控制字顺序起始地址。当把该起始地址放入MicroPC中后,就从微程序内存中找到相应的控制字,并利用它在数据通路中把数据从一个寄存器传送到另一个寄存器。由于MicroPC中的地址并发递增来指向下一个控制字,因此对于序列中的每个控制器都会重复一遍这一步骤。最终,当执行完最后一个控制字时,就从内存中取出一条新的指令,整个过程会重复进行。由此可见,控制字的数量及时钟周期的数目对于每一条指令都可以是不同的。因此在CISC中很难实现指令流水操作。另外,速度相对较慢的微程序存储器需要一个较长的时钟周期。由于指令流水和短的时钟周期都是快速执行程序的必要条件,因此CISC体系结构对于高效处理器而言不太合适的。

在计算机指令系统的优化发展过程中,出现过两个截然不同的优化方向:CISC技术和RISC技术。CISC是指复杂指令系统计算机(Complex Instruction Set Computer);RISC是指精简指令系统计算机(Reduced Instruction Set Computer)。这里的计算机指令系统指的是计算机的最低层的机器指令,也就是CPU能够直接识别的指令。随着计算机系统的复杂,要求计算机指令系统的构造能使计算机的整体性能更快更稳定。最初,人们采用的优化方法是通过设置一些功能复杂的指令,把一些原来由软件实现的、常用的功能改用硬件的指令系统实现,以此来提高计算机的执行速度,这种计算机系统就被称为复杂指令系统计算机,即Complex Instruction Set Computer,简称CISC。

另一种优化方法是在20世纪80年代才发展起来的,其基本思想是尽量简化计算机指令功能,只保留那些功能简单、能在一个节拍内执行完成的指令,而把较复杂的功能用一段子程序来实现,这种计算机系统就被称为精简指令系统计算机.即Reduced Instruction Set Computer,简称RISC。RISC技术的精华就是通过简化计算机指令功能,使指令的平均执行周期减少,从而提高计算机的工作主频,同时大量使用通用寄存器来提高子程序执行的速度。从计算机诞生以来,人们一直沿用CISC指令集方式。早期的桌面软件是按CISC设计的,并一直沿用。桌面计算机流行的x86体系结构即使用CISC。微处理器(CPU)厂商一直在走CISC的发展道路,包括Intel、AMD,还有其他一些现在已经更名的厂商,如TI(德州仪器)、Cyrix以及VIA(威盛)等。CISC架构的服务器主要以IA-32架构(IntelArchitecture,英特尔架构)为主,而且多数为中低档服务器所采用。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭