DFT概述
扫描二维码
随时随地手机看文章
离散傅里叶变换(DFT),是傅里叶变换在时域和频域上都呈现离散的形式,将时域信号的采样变换为在离散时间傅里叶变换(DTFT)频域的采样。在形式上,变换两端(时域和频域上)的序列是有限长的,而实际上这两组序列都应当被认为是离散周期信号的主值序列。即使对有限长的离散信号作DFT,也应当将其看作经过周期延拓成为周期信号再作变换。在实际应用中通常采用快速傅里叶变换以高效计算DFT。
DFT的一个重要特点就是隐含的周期性,从表面上看,离散傅里叶变换在时域和频域都是非周期的,有限长的序列,但实质上DFT是从DFS引申出来的,它们的本质是一致的,因此DTS的周期性决定DFT具有隐含的周期性。可以从以下三个不同的角度去理解这种隐含的周期性(1)从序列DFT与序列FT之间的关系考虑X(k)是对频谱X(ejω)在[0,2π]上的N点等间隔采样,当不限定k的取值范围在[0,N-1]时,那么k的取值就在[0,2π]以外,从而形成了对频谱X(ejω)的等间隔采样。由于X(ejω)是周期的,这种采样就必然形成一个周期序列(2)从DFT与DFS之间的关系考虑。X(k)= ∑n={0,N-1}x(n) WNexp^nk,当不限定N时,具有周期性(3)从WN来考虑,当不限定N时,具有周期性
OFDM(Orthogonal Frequency Division Multiplexing)即正交频分复用技术,实际上OFDM是MCM(Multi Carrier Modulation),多载波调制的一种。通过频分复用实现高速串行数据的并行传输, 它具有较好的抗多径衰弱的能力,能够支持多用户接入。OFDM技术由MCM(Multi-Carrier Modulation,多载波调制)发展而来。OFDM技术是多载波传输方案的实现方式之一,它的调制和解调是分别基于IFFT和FFT来实现的,是实现复杂度最低、应用最广的一种多载波传输方案。
(1)时域和频域混叠根据采样定理,只有当采样频率大于信号最高频率的两倍时,才能避免频域混叠。实际信号的持续时间是有限的,因而从理论上来说,其频谱宽度是无限的,无论多 大的采样频率也不能满足采样定理。但是超过一定范围的高频分量对信号已没有多大的影响,因而在工程上总是对信号先进行低通滤波另一方面,DFT得到的频率函数也是离散的,其频域抽样间隔为F0,即频率分辨力。为了对全部信号进行采样,必须是抽样点数N满足条件N=T0/T=fs/F0从以上两个公式来看,信号最高频率分量fc和频率分辨力F0有矛盾。若要fc增加,则抽样间隔T就要减小,而FS就要增加,若在抽样点数N不变的情况下,必然是F0增加,分辨力下降。唯一有效的方法是增加记录长度内的点数N,在fc和F0给定的条件下,N必须满足N>2fc/F0(2)截断效应在实际中遇到的序列x(n),其长度往往是有限长,甚至是无限长,用DFT对其进行谱分析时,必须将其截断为长度为N的有限长序列Y(n)=x(n).RN(n)根据频率卷积定理Y(e)=1/2Πx(e)*H(e)|ω|<2π/N叫做主瓣,其余部分叫做旁瓣
(3)频谱泄露原序列x(n)的频谱是离散谱线,经截断后使每根谱线都带上一个辛格谱,就好像使谱线向两边延申,通常将这种是遇上的截断导致频谱展宽成为泄露,泄露使得频谱变得模糊,分辨率降低(4)谱间干扰因截断使主谱线两边形成许多旁瓣,引起不同分量间的干扰,成为谱间干扰,这不仅影响频谱分辨率,严重时强信号的旁瓣可能湮灭弱信号的主谱线。截断效应是无法完全消除的,只能根据要求折中选择有关参量。(5)栅栏效应N点DFT是在频率区间[0,2π]上对信号的频谱进行N点等间隔采样,得到的是若干个离散点X(k),且它们之限制为基频F0的整数倍,这部好像在栅栏的一边通过缝隙看另一边的景象,只能在离散点的地方看到真实的景象,其余部分频谱成分被遮拦,所以称为栅栏效应。减小栅栏效应,可以在时域数据末端增加一些零值点,是一个周期内的点数增加(6)信号长度的选择在时域内对信号长度的选择会影响DFT运算的正确性。实际的信号往往是随机的,没有确定的周期,因此在实际中,应经可能估计出几个典型的、带有一定周期性的信号区域进行频谱分析,然后在取其平均值,从而得到合理的结果。