当前位置:首页 > 厂商动态 > ADI
[导读]本次实验旨在研究一个使用NPN晶体管的简单差分放大器。首先,我们需要做一些关于硬件限制问题的说明。ADALM2000系统中的波形发生器具有高输出带宽,该高带宽代来了宽带噪声。由于差分放大器的增益,本次实验中测量所需的输入信号电平相当小。如果直接使用波形发生器输出,则其输出的信号信噪比不够高。通过提高信号电平,然后在波形发生器输出和电路输入之间放置衰减器和滤波器(图1),可以改善信噪比。本次实验需要如下材料:

目标

本次实验旨在研究一个使用NPN晶体管的简单差分放大器。首先,我们需要做一些关于硬件限制问题的说明。ADALM2000系统中的波形发生器具有高输出带宽,该高带宽代来了宽带噪声。由于差分放大器的增益,本次实验中测量所需的输入信号电平相当小。如果直接使用波形发生器输出,则其输出的信号信噪比不够高。通过提高信号电平,然后在波形发生器输出和电路输入之间放置衰减器和滤波器(图1),可以改善信噪比。本次实验需要如下材料:

► 两个100 Ω电阻

► 两个1 kΩ电阻

► 两个0.1 μF电容(标记为104)

学子专区—ADALM2000实验:BJT差分对

图1.11:1衰减器和滤波器

本次实验的所有部分都会使用该衰减器和滤波器。

带尾电阻的差分对

材料

ADALM2000主动学习模块

► 无焊面包板

► 跳线

► 两个10 kΩ电阻

► 一个15 kΩ电阻(将10 kΩ电阻和4.7 kΩ电阻串联)

► 两个小信号NPN晶体管(2N3904或SSM2212 NPN匹配对)

说明

面包板连接如图3所示。Q1和Q2应从您可用的且VBE匹配最佳的晶体管中选择。Q1和Q2的发射极与R3的一端连接在一起。R3的另一端连接到Vn (-5V),提供尾电流。Q1的基极连接到第一个任意波形发生器的输出,Q2的基极连接到第二个任意波形发生器的输出。两个集电极负载电阻R1和R2分别连接在Q1和Q2的集电极与正电源Vp (5V)之间。差分示波器输入(2+和2-)用于测量两个10 kΩ负载电阻上的差分输出。

学子专区—ADALM2000实验:BJT差分对

图2.带尾电阻的差分对

硬件设置

第一个波形发生器配置为200 Hz三角波,峰峰值幅度为4 V,偏移为0。第二个波形发生器配置为200 Hz三角波,峰峰值幅度为4 V,偏移为0 V,但相位为180°。电阻分压器将Q1和Q2的基极处的信号幅度降低到略小于200 mV。示波器的通道1中的1+脚连接到第一个波形发生器W1的输出,1-脚连接到W2的输出。通道2连接到图中标注2+和2-的位置,并设置为每格1 V。

学子专区—ADALM2000实验:BJT差分对

图3.带尾电阻的差分对面包板电路

程序步骤

采集如下数据:x轴是任意波形发生器的输出,y轴是使用2+和2-输入的示波器通道2。通过改变R3的值,探索尾电流电平对电路增益的影响(观察通过原点的直线的斜率)和对线性输入范围的影响,以及当电路饱和时,观察增益非线性下降的形状。然后在基本电路上增加点小元件,例如发射极退化电阻,探索扩展和线性化输入摆幅范围的技术及其对电路增益的影响。

配置示波器以捕获所测量的两个信号的多个周期。xy图示例如图4所示。

学子专区—ADALM2000实验:BJT差分对

图4.带尾电阻的差分对xy图

电流源用作尾电流

使用简单电阻作为尾电流具有局限性。应探索构建电流源来偏置差分对的方法。这可以由几个额外的晶体管和电阻构成,如之前的ADALM2000实验“稳定电流源”所示。

附加材料

► 两个小信号NPN晶体管(Q3、Q4 = 2N3904或SSM2212)

说明

► 面包板连接如图6所示。

学子专区—ADALM2000实验:BJT差分对

图5.带尾电流源的差分对

硬件设置

第一个波形发生器配置为200 Hz三角波,峰峰值幅度为4 V,偏移为0。第二个波形发生器也应配置为200 Hz三角波,峰峰值幅度为4 V,偏移为0 V,但相位为180°。电阻分压器将Q1和Q2的基极处的信号幅度降低到略小于200 mV。示波器的通道1的1+脚连接到第一个波形发生器W1的输出,1-脚连接到W2的输出。通道2连接到标注2+和2-的位置,并设置为每格1 V。

学子专区—ADALM2000实验:BJT差分对

图6.带尾电流源的差分对面包板电路

程序步骤

配置示波器以捕获所测量的两个信号的多个周期。xy图示例如图7所示。

学子专区—ADALM2000实验:BJT差分对

图7.带尾电流源的差分对xy图

Measuring Common-Mode Gain

测量共模增益

学子专区—ADALM2000实验:BJT差分对

图8.共模增益配置

共模抑制是差分放大器的一个关键方面。CMR可以通过将两个晶体管Q1和Q2的基极连接到同一输入源来测量。图10中的曲线显示了当W1的共模电压从+2.9 V扫描至-4.5 V时,电阻偏置差分对和电流源偏置差分对的差分输出。输入上的最大正摆幅以晶体管的基极电压超过集电极电压和晶体管饱和电压的点为限。这可以通过观察晶体管的集电极电压相对于地为单端(即将2-示波器输入接地)来检查。

硬件设置

波形发生器配置为100 Hz正弦波,峰峰值幅度为8 V,偏移为0。示波器的通道1的1+连接到第一个波形发生器W1的输出,1-连接到地。通道2连接到标注2+和2-的位置,并设置为每格1 V。

学子专区—ADALM2000实验:BJT差分对

图9.共模增益面包板电路

程序步骤

配置示波器以捕获所测量的两个信号的多个周期。产生的波形如图10所示。

学子专区—ADALM2000实验:BJT差分对

图10.共模增益波形

问题:

对于图8中的电路,如果将晶体管Q1的基极视为输入,该晶体管放大器对于输出2+和2-而言是反相还是同相?

对于同一电路,说明当输入电压(W1)增加时,每个输出电压(2+和2-)会发生什么。另外请说明,当输入电压减小时会发生什么。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭