电源提示:GaN 器件如何提高谐振转换器效率
扫描二维码
随时随地手机看文章
近年来,诸如氮化镓 (GaN) 和碳化硅 (SiC) 场效应晶体管 (FET) 之类的宽带隙功率器件已开始商用。与高压 (≥600V) 硅 FET 相比,GaN 和 SiC FET 通常具有更低的导通电阻 (R ds(on) )、更低的输出电容 (C oss ) 和更少/没有反向恢复电荷 (Q rr )。由于其较低的开关损耗,我们可以大大提高具有宽带隙功率器件的硬开关转换器的效率。
将 GaN FET 应用于谐振转换器可通过减少磁损耗来提高效率。氮化镓晶体管和碳化硅MOSFET日益引起工业界,特别是电气工程师的重视。之所以电气工程师如此重视这两种功率半导体,是因为其材料与传统的硅材料相比有诸多的优点,如图1所示。氮化镓和碳化硅材料更大的禁带宽度,更高的临界场强使得基于这两种材料制作的功率半导体具有高耐压,低导通电阻,寄生参数小等优异特性。当应用于开关电源领域中,具有损耗小,工作频率高,可靠性高等优点,可以大大提升开关电源的效率,功率密度和可靠性等性能
让我们以图 1 所示的电感-电感-电容串联谐振转换器 (LLC-SRC) 为例。LLC-SRC 使用存储在谐振电感 (L r ) 中的能量对输入开关网络中的 MOSFET 输出电容器进行放电。如果在 MOSFET 栅极信号变高之前输出电容电压放电至零,则可以实现零导通损耗。
图 1:LLC SRC
图 2 显示了 LLC-SRC 的关键波形。在 MOSFET 的开关瞬态期间,i Lr等于流过 L m的最大电流,如公式 1 所示:
电流 I Lm(假设在死区时间保持不变)对一个 MOSFET的 C oss进行放电并为另一个 MOSFET的 C oss充电。假设半桥的两个 MOSFET的 C oss相同,并且我们可以忽略变压器的绕组间电容,公式 2 表示可以实现零开通损耗的最大电感:
图 2:LLC-SRC 开关波形
现在让我们假设我们正在使用 LLC-SRC在相同的 400V IN到 12V OUT转换规范上选择 GaN FET 和硅 FET 。TI 的LMG3410 GaN 器件具有 70mΩ 的导通电阻和 95pF 的输出电容(与能量相关)。我发现一个 70mΩ 硅 FET 具有 140pF 的输出电容。如果我们选择的匝数比为 n = 16,并且 LLC-SRC 的目标最大开关频率为 750kHz,则 L m,maxTI 的 LMG3410 为 134µH,带有 140pF 输出电容器的硅 FET 为 91µH。作为输入开关,如果使用相同的内核,带有硅 FET 的 LLC-SRC 变压器的气隙将比带有 LMG3410 的变压器宽。由于气隙较宽,变压器导线上的涡流损耗会更大。
图 3 显示了相同的 LLC-SRC 在相同的测试条件下具有不同变压器气隙的热性能。如我们所见,具有较宽气隙的变压器上的线损比具有较窄气隙的变压器高得多。因此,使用具有较低 C oss 的GaN 器件有助于降低谐振转换器中的磁损耗。
图 3:LLC-SRC 变压器在 400V IN、12V/42A 输出时的热性能,L m = 100µH(更窄的气隙)(a);和 L m = 70µH(更宽的气隙)(b)
虽然在这篇文章中,我讨论了在谐振转换器上使用 GaN 器件的好处——输出电容较低,从而减少变压器损耗——但 TI GaN 器件(如 LMG3410)不仅提供低 R ds(on)和 C oss,而且还包含多种保护,例如过流和过热保护。通过所有这些保护,转换器的可靠性大大提高。
目前业界的氮化镓晶体管产品是平面结构,即源极,门极和漏极在同一平面内,这与与超级结技术(Super Junction)为代表的硅MOSFET的垂直结构不同。门极下面的P-GaN结构形成了前面所述的增强型氮化镓晶体管。漏极旁边的另一个p-GaN结构是为了解决氮化镓晶体管中常出现的电流坍陷(Current collapse)问题。英飞凌科技有限公司的CoolGaN产品的基材(Substrate)采用硅材料,这样可以大大降低氮化镓晶体管的材料成本。由于硅材料和氮化镓材料的热膨胀系数差异很大,因此在基材和GaN之间增加了许多过渡层(Transition layers),从而保证氮化镓晶体管在高低温循环,高低温冲击等恶劣工况下不会出现晶圆分层等失效问题。氮化镓晶体管没有体二极管但仍旧可以反向通流,因此非常适合用于需要功率开关反向通流且会被硬关断(hard-commutation)的电路,如电流连续模式(CCM)的图腾柱无桥PFC中,可以获得极高的可靠性和效率,