何为神经网络模型?神经网络模型机理结构介绍
扫描二维码
随时随地手机看文章
神经网络模型是深度学习中需要考虑的,学习深度学习方向的朋友对神经网络模型都有一些了解。为增进大家对神经网络模型的认识,本文将对神经网络模型以及神经网络模型的机理结构予以介绍。如果你对神经网络模型具有兴趣,不妨继续往下阅读哦。
模拟人类实际神经网络的数学方法问世以来,人们已慢慢习惯了把这种人工神经网络直接称为神经网络。神经网络在系统辨识、模式识别、智能控制等领域有着广泛而吸引人的前景,特别在智能控制中,人们对神经网络的自学习功能尤其感兴趣,并且把神经网络这一重要特点看作是解决自动控制中控制器适应能力这个难题的关键钥匙之一。
神经网络(Neural Networks,NN)是由大量的、简单的处理单元(称为神经元)广泛地互相连接而形成的复杂网络系统,它反映了人脑功能的许多基本特征,是一个高度复杂的非线性动力学习系统。神经网络具有大规模并行、分布式存储和处理、自组织、自适应和自学能力,特别适合处理需要同时考虑许多因素和条件的、不精确和模糊的信息处理问题。神经网络的发展与神经科学、数理科学、认知科学、计算机科学、人工智能、信息科学、控制论、机器人学、微电子学、心理学、光计算、分子生物学等有关,是一门新兴的边缘交叉学科。
神经网络的基础在于神经元。
神经元是以生物神经系统的神经细胞为基础的生物模型。在人们对生物神经系统进行研究,以探讨人工智能的机制时,把神经元数学化,从而产生了神经元数学模型。
大量的形式相同的神经元连结在—起就组成了神经网络。神经网络是一个高度非线性动力学系统。虽然,每个神经元的结构和功能都不复杂,但是神经网络的动态行为则是十分复杂的;因此,用神经网络可以表达实际物理世界的各种现象。
神经网络模型是以神经元的数学模型为基础来描述的。人工神经网络(ArtificialNuearlNewtokr)s,是对人类大脑系统的一阶特性的一种描。简单地讲,它是一个数学模型。神经网络模型由网络拓扑.节点特点和学习规则来表示。神经网络对人们的巨大吸引力主要在下列几点:
1.并行分布处理。
2.高度鲁棒性和容错能力。
3.分布存储及学习能力。
4.能充分逼近复杂的非线性关系。
在控制领域的研究课题中,不确定性系统的控制问题长期以来都是控制理论研究的中心主题之一,但是这个问题一直没有得到有效的解决。利用神经网络的学习能力,使它在对不确定性系统的控制过程中自动学习系统的特性,从而自动适应系统随时间的特性变异,以求达到对系统的最优控制;显然这是一种十分振奋人心的意向和方法。
人工神经网络的模型现在有数十种之多,应用较多的典型的神经网络模型包括BP神经网络、Hopfield网络、ART网络和Kohonen网络。
神经网络的基本组成单元是神经元,在数学上的神经元模型是和在生物学上的神经细胞对应的。或者说,人工神经网络理论是用神经元这种抽象的数学模型来描述客观世界的生物细胞的。
很明显,生物的神经细胞是神经网络理论诞生和形成的物质基础和源泉。这样,神经元的数学描述就必须以生物神经细胞的客观行为特性为依据。因此,了解生物神经细胞的行为特性就是一件十分重要而必须的事了。
神经网络的拓朴结构也是以生物学解剖中神经细胞互连的方式为依据的。对神经细胞相互作用情况的揭露也是十分重要的。
神经元是神经网络基本元素。只有了解神经元才能认识神经网络的本质。在这一节介绍神经元的生物学解剖,信息的处理与传递方式,工作功能以及其数学模型。
以上便是此次小编带来的神经网络模型相关内容,通过本文,希望大家对神经网络模型以及神经网络模型的机理结构具备一定的了解。如果你喜欢本文,不妨持续关注我们网站哦,小编将于后期带来更多精彩内容。最后,十分感谢大家的阅读,have a nice day!