什么样的芯片可以称为AI芯片?AI芯片详述!
扫描二维码
随时随地手机看文章
芯片的种类很多,比如图形芯片、处理器芯片等等。随着技术的发展,其中一个芯片应运而生,那就是AI芯片。为增进大家对AI芯片的认识,本文将对AI芯片进行详细阐述。如果你对芯片具有兴趣,不妨和小编一起继续往下阅读哦。
广义上讲只要能够运行人工智能算法的芯片都叫作 AI 芯片。通常意义上的 AI 芯片指的是针对人工智能算法做了特殊加速设计的芯片。AI芯片也被称为AI加速器或计算卡,即专门用于处理人工智能应用中的大量计算任务的模块(其他非计算任务仍由CPU负责)。
第一阶段: 因为芯片算力不足,所以神经网络没有受到重视;
第二阶段:通用芯片CPU的算力大幅提升,但仍然无法满足神经网络的需求;
第三阶段: GPU和和新架构的AI芯片推进人工智能落地。
GPT-3模型目前已入选了《麻省理工科技评论》2021年“十大突破性技术。 GPT-3的模型使用的最大数据集在处理前容量达到了45TB。根据 OpenAI的算力统计单位petaflops/s-days,训练AlphaGoZero需要1800-2000pfs-day,而GPT-3用了3640pfs-day。
AI运算指以“深度学习” 为代表的神经网络算法,需要系统能够高效处理大量非结构化数据(文本、视频、图像、语音等)。需要硬件具有高效的线性代数运算能力,计算任务具有:单位计算任务简单,逻辑控制难度要求低,但并行运算量大、参数多的特点。对于芯片的多核并行运算、片上存储、带宽、低延时的访存等提出了较高的需求。
随着近十年来人工智能技术不断取得突破性进展,推动着大规模的场景应用商业化落地。作为人工智能技术规模化应用的重要物理基础,AI芯片也拥有巨大的产业价值和战略地位。
AI芯片应用领域不断向多维度方向发展,例如CV(计算机视觉)、自动驾驶、智能手机以及语音交互。而在语音交互领域,中国智能语音市场正在维持高速增长。根据德勤报告显示,预计2030年消费级应用场景超过700亿元,企业级场景达到发展空间也预计将达到千亿级规模。
为了让智能终端拥有更好的交互体验,针对语音算法打造相匹配的AI芯片,采用软硬一体化的解决方案几乎是目前行业最为普遍的选择,这也是技术迭代的必然路径。如今智能语音赛道云集了众多玩家,如百度、科大讯飞、云知声、思必驰、出门问问、启英泰伦等都纷纷布局了芯片产业。
智能语音在技术关联和数据层次上天生具有更高的复杂度,单单自然语言理解和处理的能力就花费了科学家们数十年的心血才换来今日的交互体验。而能够将语音识别、语义理解、自然语言处理、语音合成、声音降噪等技术实现“云端芯”一体化,把业务延伸到芯片甚至硬件,才是将技术商业化的合理路径。
通用芯片架构并非为AI专门设计,天然存在性能、功耗等方面的局限性已是老生常谈。近几年在业内众多企业的努力下,解决了传统通用芯片的适配问题,公司也纷纷投入到专用芯片的制造。
在技术问题得到解决后,AI语音芯片在商业化的道路上仍面临很多挑战:
首先,如何达到在成本约束下的性能最优化。智能语音技术是紧耦合的,东拼西凑的技术无法得到理想的交互效果。需要纳入考量的是将全栈式的解决方案搭载到芯片上,同时每多一项功能就意味着成本的增加。低成本、易实施、低功耗的产品特点需要与解决方案密切结合。
第二,纵观布局AI语音芯片公司,它们所选的应用终端都集中在家居、电器、机器人、车载等场景。然而这几类场景产品品类众多分散是一大特点,尤其是家居电器,大到一台空调,小到一个插座都有对语音芯片的需求。如何在这些设备上适配芯片,判断芯片每一项效用的必要性,都需要对终端产品功能Know-How有着深刻的掌握。
第三,由于客户厂商天然的分散性,标准产品加工具定制是最高效的合作模式。拥有高效的工具链,降低定制化所需要的时间以及边际成本,将会很大程度提升语音芯片商业化进程。
以上便是此次小编带来的芯片相关内容,通过本文,希望大家对AI芯片具备一定的了解。如果你喜欢本文,不妨持续关注我们网站哦,小编将于后期带来更多精彩内容。最后,十分感谢大家的阅读,have a nice day!