什么传感器应用场景拥有更大的发展空间?
扫描二维码
随时随地手机看文章
除了自动驾驶外,还有哪些场景需要传感融合的引入呢?它们的存在背后是否存在着全新的市场等待创新企业去挖掘?在回答这个问题时,我们首先需要判断,传感融合的加入,能否对整体行业效率进行提升。
上文我们总结了,传感融合主要提升的是信息采集和信息处理效率。那么这个场景就必须是围绕或者侧重信息数据的(先不去管目标信息和原始信息那么高深的程度)。通过两个维度来做分析:特定产业中设备的传感器数量及数据精确度。我们发现有的场景对传感融合的需求非常迫切,有些则只是锦上添花。
列举几个高速发展的热点产业,根据它们的产品特性在上图中进行排列。通过排列分析可以发现:复杂环境下,如动态或开放场景中工作的设备需要安装更多的传感器,来满足外界信息采集的多样性及全面性;执行复杂任务的设备,如高精度任务或需自主进行行为判断的工作,对于数据的精确性要求很高。
所以,除了自动驾驶外,无人机以及服务机器人对于传感融合的需求会同样强烈,甚至随着细分场景中各自工作的复杂度及自动化程度提升,这一需求会更加突出。(环境感知的融合运算不仅可以用于自动驾驶)
如果从行业的成熟度去判断,我们可以把行业的发展按照时间来分成三个阶段。
第一阶段是行业的萌芽期。产品受限于当前技术或研发初衷只是为了解决具体需求。这个阶段企业在软硬件的投入都不会多,整个行业都在摸索突破口和想象空间。
第二阶段是高速发展期。平台和生态已经搭建完成,民众对于这个行业的认知程度非常高。行业逐步形成龙头态势,产品通过竞争不断打磨外观及成本。这个时候算法占到主导地位,传感器受到空间设计或成本等因素依旧保持旧有形态,甚至在算法的填补上进行缩减。
第三阶段则是行业转型升级,配合需求驱动,产生颠覆性的产品或服务迭代。传统汽车向自动驾驶过渡就属于第二阶段迈向第三阶段的典型例子。而服务型机器人和无人机还在不断寻找自身的突破。
平时大家所说的影像传感器,其实就是CMOS,所以今天专门针对CMOS来说。目前主流的CMOS传感器,分为前照式、背照式和堆栈式。
前照式传感器也就是过去多年来一直使用的传统传感器。它金属线路层在光电二极管上方,这种传感器现在来看是成像质量和高感表现最差的一种,一般都用在低端的入门级单反和微单上面。
而背照式传感器则是金属线路层在光电二极管下方,这么做的好处是传感器不会因为金属线路层的遮挡而损失光线,其光线利用率高出前照式至少30%以上,画质更细腻,噪点更少。现在的一些高端的单反和微单机身都是采用背照式传感器。
除了这两种传感器,大家还经常看到堆栈式传感器,这又是一种什么结构呢?其实堆栈式传感器是由背照式传感器发展而来,而堆栈式传感器和背照式传感器的区别就在于:前者的电路区放在了另外一块板上,从而形成“堆栈”的结构。这种结构的一个最主要的优势就在于:堆栈的结构可以让电路区容纳更多的晶体管,从而大大提高处理速度,表现在相机上的性能就是,连拍速度更高,对焦速度更快,视频拍摄行性能也更强——比如更高的帧率和画面尺寸,这也是现在新的微单视频性能更强大和连拍速度更快的主要原因。
前几天vivo发布了大屏手机vivo X Note,以及折叠屏手机vivo X Fold,这两款产品虽然很不错,但是高昂的售价加上骁龙8那个破芯片,对于大众用户的吸引力无疑比较有限。相比之下,价格更便宜,而且搭载天玑9000的X80系列无疑更值得期待。
那么vivo X80系列会是什么样呢?目前机器的外观已经爆料的差不多了,前面的屏幕都是居中挖孔曲面屏,背部的摄像头设计和vivo x Note差不多,其中X80相比X80 Pro主要是少了个潜望式长焦镜头。
相关配置方面,vivo X80采用天玑9000处理器,V1影像芯片,6.78英寸曲面屏,E5发光材料 ,1080P分辨率,120Hz刷新率,前置32MP,后置3摄,50MP主摄(IMX866,微云台防抖)+12MP超广角+12MP人像长焦(2X光变),4500mAh电池,80W有线快充,双扬声器、X 轴线性马达,NFC,红外遥控。
IMX866是IMX766的升级款,原始尺寸1/1.49",但拍照会裁切成4:3,底的实际大小会缩到1/1.56",此外这个传感器其实比较适合拍视频。三星GNV则是三星GN1的定制升级款,1/1.3"大底。