探索用于超高密度存储的基于液体的存储器
扫描二维码
随时随地手机看文章
从 2030 年起,新型存储技术有望进入内存路线图,在延迟/生产力空间中补充 3D NAND 闪存、硬盘驱动器 (HDD) 和磁带。本文介绍了两种新的基于液体的存储概念:胶体和电石存储器。我们解释了基本操作原理,展示了第一个实验结果,并强调了它们在未来近线存储应用中的潜力。这些液态记忆最近在 2022 年国际记忆研讨会 (IMW) 的一篇受邀论文中提出。
存储密度扩展趋势放缓
当今的内存格局包括各种类型的内存,每一种内存都在存储数据和将数据来回馈送到电子系统的计算部分中发挥作用。在传统的计算机层次结构中,快速且更昂贵的有源存储器——静态随机存取存储器 (SRAM) 和动态 RAM (DRAM)——与更高延迟和更低成本的存储解决方案不同。
存储大量数据主要通过 NAND 闪存、HDD 和磁带技术完成。虽然磁带存储仍然仅限于长期存档,但 HDD 和 NAND 闪存用于在线和近线存储应用:它们都需要比磁带更频繁地访问,访问时间从微秒到几秒不等。NAND 闪存在这两种存储类型中提供最低的延迟和功耗。这种非易失性存储器存在于所有主要的电子最终用途市场,例如智能手机、服务器、PC、平板电脑和 USB 驱动器。
多年来,研究人员已经能够显着提高各种存储解决方案的比特密度,以跟上对每卷比特不断增长的需求。然而,几年来,HDD 技术一直未能跟随历史生产力趋势线。预计 NAND 闪存技术也会出现类似的时间延迟。到 2029 年, 3D NAND 闪存预计将达到高达 70Gbit/mm 2的存储密度,相对于历史密度扩展路线图,这将放缓大约四年。
进入后NAND时代
在 NAND 闪存扩展饱和后,我们预计不同的存储技术将共存,每种技术都会在大小、能耗、延迟和成本方面进行权衡。正在研究存储的新概念,不是为了取代现有的存储解决方案,而是在延迟/生产力空间中补充它们。想想 DNA 存储,目标是低成本、超高密度但速度较慢的归档应用(例如保存(监视)视频、医疗和科学数据),或铁电存储技术,预计将在低延迟中找到自己的位置存储细分市场。所有这些存储器都将组织在不同的层级中,并将共同满足 >100 zettabyte 数据时代的存储需求。
在本文中,我们提出了两种新的基于液体的存储概念——胶体和电石存储器——具有超高密度近线存储应用的潜力。例如,这些存储解决方案可以使归档的“非活动”数据,如电子邮件档案、图像和声音文件,或其他大型文档,用户可以在几秒钟内访问。从 2030 年开始,它们可能会在 HDD 和磁带之间找到自己的位置,每卷的位数要高得多,但比 3D NAND 闪存慢。
增加位密度需要新的方法来寻址存储单元
我们认为,以经济高效的方式进一步扩展传统固态存储器(如 SRAM、DRAM 或 3D NAND 闪存)的位密度具有挑战性,这是有一个根本原因。在所有这些存储器中,存储单元被组织成二维或三维阵列,位于字线和位线的交叉点。每个单元至少由一个存储元件和一个访问设备组成。存取装置——通常是晶体管或二极管——将存储元件连接到至少两条线,用于选择、读取和写入存储单元。
缩放挑战与存储元件本身无关(单个分子大小的存储元件已被证明),而是与访问设备及其布线有关。单元的尺寸至少为 2Fx2F (4F 2 ),其中 F 是最小特征尺寸(例如,字线半间距),由用于图案化导线的(昂贵的)光刻步骤确定。这种为每个存储元件配备一个访问设备的配置使得开发具有成本效益的高密度解决方案和每个单元存储多于几位(目前最多 4 位 NAND 闪存单元)具有挑战性。
HDD 和磁带存储技术采用了不同的策略。在这里,数量显着减少的读/写访问设备连接到用作存储介质的更大的未图案化区域。这导致比 NAND 闪存更高的密度和更低的每比特成本,以及更慢、更笨重和耗能的解决方案——因为读取头必须以机械方式定位在大面积上。
将密集的访问设备阵列连接到体积存储介质
通过协调两全其美,可以找到新的方法来以可承受的每比特成本制造超高密度存储设备,并且比磁带等运行速度更快。为什么不制作连接到体积存储介质的密集访问设备阵列呢?受生命科学进步的启发,这种存储介质可以是一种包含离子、分子或(纳米)粒子的液体,可以对其进行操作并以更大的体积移动到作为密集阵列一部分的访问设备。
这种方法将实现多位操作,每个位所需的访问设备、电线和光刻步骤显着减少。这种新方法的高密度潜力引起了业界的兴趣,全球范围内正在研究几种基于液体的概念。
下面,我们提出了两个新的基于液体的概念,它们具有长期的近线存储潜力,目标是(亚)秒访问时间。在本文中,重点是它们的工作原理和第一个实验结果。更多细节在 IMW 2022 的一篇题为“Liquid memory and the future of data storage”的论文中进行了介绍,有关电石存储器的工作最近发表在 IEEE Transactions on Electron Devices 的一篇题为“Electrolithic Memory: A New Device for Ultrahigh”的论文中-密度数据存储”。
胶体记忆:操纵纳米粒子
Imec 引入的第一个基于液体的记忆概念被称为胶体记忆。它很好地展示了如何将液体(例如,水)用作体积存储介质,并将溶解的纳米颗粒(胶体)用作数据符号的载体。
这个想法是使用包含在储层中的至少两种类型的纳米粒子(图 3 中的 A 和 B)的胶体。该储存器连接到毛细管阵列,纳米颗粒可以插入其中。如果纳米颗粒仅比毛细管的直径稍小,则可以保留颗粒(位)进入毛细管的顺序。正是在这个比特序列中,信息才能被编码。纳米颗粒可以通过位于每个毛细管入口处的电极选择性地诱导(和感测)。CMOS 外围电路控制电极阵列。
主要挑战之一与“编写”纳米粒子的序列有关。换句话说,选择性地吸引颗粒并将其插入毛细管中。Imec 研究人员正在从理论上和实验上探索使用频率相关介电泳作为写入机制的可行性。按照这种机制,跨电极产生的交变电场对纳米颗粒施加力。这种力是吸引力还是排斥力取决于粒子的类型和诱发电场的频率等。可以通过选择对所施加频率(吸引与排斥)响应不同的两个粒子来创建选择性写入过程。
胶体记忆技术处于研发探索阶段。第一组采用不同配置(包括叉指和棋盘排列阵列)的微米大小电极的实验标志着第一个里程碑。利用介电泳效应,他们展示了从混合溶液中选择性提取聚苯乙烯纳米粒子的可行性。但所需的技术仍需要重大发展。正在进行进一步的研究以微调该概念并提供纳米级的第一个原理证明。
电石存储器:利用电化学
与胶体存储器类似,电石存储器也使用流体储存器和毛细管阵列。但在这种情况下,金属离子溶解在液体中,读写操作是通过更传统的电沉积和电溶解技术来实现的。
更详细地说,储液器包含一种流体,其中溶解了至少两种金属离子(图 5 中的 A 和 B)。该储层连接到一系列毛细管(或孔)。工作电极(由钌等惰性金属制成)位于每个毛细管的底部。储存器也与单个反电极接触。储液器、工作电极和公共反电极一起为每个毛细管形成一个电化学电池。密集的工作电极阵列连接到 CMOS 集成电路,用于单独寻址每个电极。
通过在毛细管内的工作电极上施加一定的电位,金属 A 的薄层可以沉积在电极上。金属 B 的行为相似,但沉积的起始电位不同——由其化学性质决定。信息现在可以被编码在交替层的堆栈中,暗示着地层石(lithos)——这就是新记忆的名称。
我们现在可以想出几种方法来对信息进行编码。在一种可能的编码方案中,1nm 的金属 A 可用于编码二进制 0,而 2nm 厚的 A 层编码二进制 1。固定厚度(例如,0.5nm)的金属 B 层可用于描绘后续层实际上,假设 B 的起始电位高于 A,金属 B 层将与一定量的 A 合金化。可以通过反转电池电流和监测溶解电位来实现电石存储器的读取。
在使用毫米和微米大小电极的第一个概念验证中,可以成功地证明使用这些技术进行读写的可行性。例如,对于直径为 4µm 的电极,研究人员展示了两层 CoNi 的连续写入和读取,与三层 Cu 交替。实验还表明,微米大小的电极比大电极的写入/读取时间更短。
最终需要紧密间距的纳米级井来实现足够高的位密度和响应时间。因此,Imec 研究人员制造了第二代电石存储单元,旨在从广泛的平行纳米井阵列(直径 80-150 纳米,深 300 纳米)写入和读取信号。初步结果表明,溶解 Cu/CoNi 五层堆叠后获得的读取信号与写入(即沉积)操作很好地对应,如图 7 所示。
迈向工业应用:提高密度、响应时间、带宽、耐用性和保留率
这些基于液体的新型存储器仍处于探索性研究阶段,其中电石存储器是最先进的。尽管如此,业界已经对这些概念表现出极大的兴趣。在 Imec,我们设想从 2030 年起将它们引入内存路线图,届时3D NAND 闪存的位密度缩放将开始饱和。
随着进一步扩展的努力,我们预计通过这些方法,位存储密度可以推向 1Tbit/mm 2范围,与 3D NAND 闪存相比,每 mm 2的工艺成本更低。对于液态存储器而言,只有电极和毛细管的间距为 40nm,才能实现如此高的密度。此外,研究人员必须能够分别制造用于胶体和电石存储器的纵横比约为 400:1 和 165:1 的毛细管。这类似于制造未来 3D NAND 闪存产品所需的内存孔的纵横比,因此被认为是一个现实的目标。
要成为近线应用的可行存储解决方案,该技术还必须具有足够的响应时间、带宽(例如 20Gb/s)、循环耐久性(10 3写入/读取周期)、能耗(几 pJ 写入位)、和保留(超过 10 年)。这些评估将成为进一步研究的主题,建立在 Imec 的 300 毫米液体记忆测试平台上,该平台具有不同配置的胶体和电石电池。