关于人工智能的这些知识,你了解多少呢?
扫描二维码
随时随地手机看文章
人工智能从模块上可分为感知、计算和控制三大部分,由表及里可分为应用层、数据层、算法层、算力层,而随着2012年芯片进入28nm制程后的量子隧穿效应导致摩尔定律失效,“每提升一倍算力,就需要一倍能源”的后摩尔定律或将成为人工智能时代的核心驱动逻辑,算力的发展将极大受制于能源。
当前全球用于制造算力芯片的能源占全球用电量的约1%,可以预测在人工智能大规模普及的未来数十年后,该比例将会大幅提升至50%甚至90%以上。而全球如何在减少化石能源、提升清洁能源占比,从而确保减少碳排放遏制全球升温的同时,持续提升能源使用量级,将推动一系列能源技术革命。关于该方向的研究可参考我们的另一篇报告《碳中和:能源技术新革命》。
早在第一次科技革命之前260年,哥伦布地理大发现就使西班牙成为了第一个全球化霸主。蒸汽机驱动英国打败西班牙无敌舰队,电力和两次世界大战使美国超过英国,信息技术又让美国赢得和苏联的冷战对抗,全球过了30年相对和平的单极霸权格局。
因此中国如果仅在现有技术框架中与欧美竞争,只会不断被卡脖子,事倍功半。只有引领下一代人工智能和碳中和能源技术科技革命浪潮,才能从全球竞争中胜出。
尽管中国已经跻身人工智能领域的大国,但是我们必须认识到中美之间在AI领域仍然有着明显的差距。从投资金额和布局上看,从2013年到2021年,美国对人工智能公司的私人投资是中国的2倍多。当前美国AI企业数量领先中国,布局在整个产业链上,尤其在算法、芯片等产业核心领域积累了强大的技术创新优势。更关键的是,尽管近年来中国在人工智能领域的论文和专利数量保持高速增长,但中国AI研究的质量与美国仍然有较大差距(集中体现在AI顶会论文的引用量的差距上)。
图灵测试刚提出没几年,人们似乎就看到了计算机通过图灵测试的曙光:1966年MIT教授Joseph Weizenbaum发明了一个可以和人对话的小程序——Eliza(取名字萧伯纳的戏剧《茶花女》),轰动世界。但是Eliza的程序原理和源代码显示,Eliza本质是一个在话题库里通过关键字映射的方式,根据人的问话回复设定好的答语的程序。不过现在人们认为,Eliza是微软小冰、Siri、Allo和Alexa的真正鼻祖。图灵测试以及为了通过图灵测试而开展的技术研发,都在过去的几十年时间里推动了人工智能,特别是自然语言处理技术(NLP)的飞速发展。
深度学习兴起建立在以Geoffrey Hinton为代表的科学家数十年的积累基础之上。简单地说,深度学习就是把计算机要学习的东西看成一大堆数据,把这些数据丢进一个复杂的、包含多个层级的数据处理网络(深度神经网络),然后检查经过这个网络处理得到的结果数据是不是符合要求——如果符合,就保留这个网络作为目标模型;如果不符合,就一次次地、锲而不舍地调整网络的参数设置,直到输出满足要求为止。本质上,指导深度学习的是一种“实用主义”的思想。实用主义思想让深度学习的感知能力(建模能力)远强于传统的机器学习方法,但也意味着人们难以说出模型中变量的选择、参数的取值与最终的感知能力之间的因果关系。
我们应该从小重视培养孩子的沟通能力和情感发展,让孩子有爱心,善共情,构筑自己的优势。
另外在艺术、创新等领域,人工智能也只能起到辅助性作用,我们也应该注重这方面对孩子的培养。
人工智能已成为国家战略,也是历史发展的必然趋势,了解计算机、互联网和人工智能相关的知识,训练逻辑思维,熟悉人工智能的思考方式,是新时代孩子的必经之路。
通过三津村直贵的这本人工智能入门书《给孩子的人工智能通识课》,掌握人工智能的基础知识,了解人工智能未来走向,以便在生活中能抓住合适的契机,引导孩子对人工智能产生好奇和探索的兴趣,也是在为孩子的美好未来尽一份力。