突破性进展:全球首座全自动化3D IC封装厂下半年量产
扫描二维码
随时随地手机看文章
传统的平面化2D封装,已经无法满足高密度、轻量化、小型化的强烈需求。玻璃金属穿孔(TGV)是一种应用于圆片级真空封装领域的新兴纵向互连技术,为实现芯片-芯片之间距离最短、间距最小的互联提供了一种新型技术途径,具有优良的电学、热学、力学性能,在射频芯片、高端MEMS传感器、高密度系统集成等领域具有独特优势,是下一代5G、6G高频芯片3D封装的首选之一。
然而,TGV技术研发存在高均一性玻璃微孔阵列制造、玻璃致密回流、玻璃微孔金属高致密填充等难题。针对此,李山博士等结合中科院合肥研究院和中国科大微纳研究与制造中心的前期研究基础及平台优势,攻克一系列技术难题,提出一种新型TGV晶圆制造方案,开发出高均一性、高致密、高深宽比的TGV晶圆。
“我们开发的TGV晶圆就像摩天大楼中基板及其中的管线,具有支撑和加强各楼层紧密联系的桥梁作用,且具有超低漏率、超低信号损耗的优势。”李山介绍说。经检测,该团队研制出的TGV晶圆各项主要参数均与国际顶级玻璃厂商肖特、康宁和泰库尼思科等相当,部分参数优于国际水平。
台积电今(17)日在2022年北美技术论坛上公布了3D Fabric平台取得的两大突破性进展,并称台积电全球首座全自动化3D IC先进封装厂将于下半年量产。
据台媒《联合报》报道,一是台积电已完成全球首颗以各应用系统整合芯片堆叠(TSMC-SoICTM)为基础的中央处理器。采用芯片堆叠于晶圆之上(Chip-on- Wafer, CoW)技术,来堆叠三级快取静态随机存储。
二是创新的智能处理器采用晶圆堆叠于晶圆之上(Wafer-on-Wafer, WoW)技术堆叠于深沟槽电容芯片之上。
另外,台积电称,为了满足客户对于系统整合芯片及其他台积电3D Fabric 系统整合服务的需求,在竹南打造全球首座全自动化 3D Fabric先进封装厂,预计今年下半年开始生产。
台积电(TSM)在2022年北美技术论坛上公布了3D Fabric平台取得的两大突破性进展,一是台积电已完成全球首颗以各应用系统整合芯片堆叠(TSMC-SoICTM)为基础的中央处理器,采用芯片堆叠于晶圆之上(Chip-on-Wafer,CoW)技术将SRAM堆叠为3级缓存;二是使用Wafer-on-Wafer(WoW)技术堆叠在深沟槽电容器芯片顶部的突破性智能处理单元。
台积电表示,由于CoW和WoW的N7芯片已经投入生产,对N5技术的支持计划在2023年进行。另外,为了满足客户对于系统整合芯片及其他台积电3D Fabric系统整合服务的需求,在竹南打造全球首座全自动化3D IC先进封装厂,预计今年下半年开始生产。
除了展示先进技术外,台积电并透露了其他重要信息,包括2024年将拥有ASML下一代芯片制造工具以及到2025年,其成熟和专业节点的产能将扩大约50%。
从半导体发展趋势和微电子产品系统层面来看,先进封测环节将扮演越来越重要的角色。如何把环环相扣的芯片技术链系统整合到一起,才是未来发展的重心。有了先进封装技术,与芯片设计和制造紧密配合,半导体世界将会开创一片新天地。现在需要让跑龙套三十年的封装技术走到舞台中央。
日前,厦门大学特聘教授、云天半导体创始人于大全博士在直播节目中指出,随着摩尔定律发展趋缓,通过先进封装技术来满足系统微型化、多功能化成为集成电路产业发展的新的引擎。在人工智能、自动驾驶、5G网络、物联网等新兴产业的加持下,使得三维(3D)集成先进封装的需求越来越强烈,发展迅猛。
封装技术伴随集成电路发明应运而生,主要功能是完成电源分配、信号分配、散热和保护。伴随着芯片技术的发展,封装技术不断革新。封装互连密度不断提高,封装厚度不断减小,三维封装、系统封装手段不断演进。随着集成电路应用多元化,智能手机、物联网、汽车电子、高性能计算、5G、人工智能等新兴领域对先进封装提出更高要求,封装技术发展迅速,创新技术不断出现。
于大全博士在分享中也指出,之前由于集成电路技术按照摩尔定律飞速发展,封装技术跟随发展。高性能芯片需要高性能封装技术。进入2010年后,中道封装技术出现,例如晶圆级封装(WLP,Wafer Level Package)、硅通孔技术(TSV,Through Silicon Via)、2.5D Interposer、3DIC、Fan-Out 等技术的产业化,极大地提升了先进封装技术水平。
当前,随着摩尔定律趋缓,封装技术重要性凸显,成为电子产品小型化、多功能化、降低功耗,提高带宽的重要手段。先进封装向着系统集成、高速、高频、三维方向发展。
图1展示了当前主流的先进封装技术平台,包括Flip-Chip、WLCSP、Fan-Out、Embedded IC、3D WLCSP、3D IC、2.5D interposer等7个重要技术。其中绝大部分和晶圆级封装技术相关。支撑这些平台技术的主要工艺包括微凸点、再布线、植球、C2W、W2W、拆键合、TSV工艺等。先进封装技术本身不断创新发展,以应对更加复杂的三维集成需求。当前,高密度TSV技术/Fan-Out扇出技术由于其灵活、高密度、适于系统集成,而成为目前先进封装的核心技术。
近年来,芯片与电子产品中高性能、高可靠性、高密度集成的强烈需求催生了3D封装技术并使其成为集成电路发展的主要推动力量之一。传统的平面化2D封装已经无法满足高密度、轻量化、小型化的强烈需求。玻璃金属穿孔(TGV)是一种应用于圆片级真空封装领域的新兴纵向互连技术,为实现芯片-芯片之间距离最短、间距最小的互联提供了一种新型技术途径,具有优良的电学、热学、力学性能,在射频芯片、高端MEMS传感器、高密度系统集成等领域具有独特优势,是下一代5G、6G高频芯片3D封装的首选之一。
为此,团队针对TGV现有工艺问题,结合中科院合肥研究院和中国科学技术大学微纳研究与制造中心的前期研究基础及平台优势,提出一种新型TGV晶圆制造方案,开发出了高均一性、高致密、高深宽比的TGV晶圆,具有超低漏率、超低信号损耗的优势,满足环形谐振器、波导缝隙天线、毫米波天线等5G/6G高频芯片,以及新型MEMS陀螺仪、加速度计3D封装需求。经检测,团队研制出的TGV晶圆各项主要参数均与国际顶级玻璃厂商肖特、康宁和泰库尼思科等相当,部分参数优于国际水平。
该项技术具有高度灵活性,可满足客户诸多定制化需求,经济效益、行业意义重大,在半导体芯片3D先进封装、射频芯片封装、MEMS传感器封装,以及新型MEMS传感器(MEMS质谱、MEMS迁移谱)设计制造、新型玻璃基微流控芯片制作等多个领域具有广阔的应用前景。