随着芯片制程的延伸,采用四面环栅结构的GAA技术逐渐受到市场关注
扫描二维码
随时随地手机看文章
Intel将在下半年发布Raptor Lake 13代酷睿,就是12代酷睿的迭代版,继续使用Intel 7工艺,继续大小核架构,其中大核架构从Golden Cove升级为Raptor Lake,继续最多8个,小核架构继续Gracemont,最多翻番到16个,核显架构继续Xe LP,接口也继续LGA1700。
但是明年的Meteor Lake 14代酷睿就不一样了,焕然一新。
Intel也早已公开确认,14代酷睿将首次引入Intel 4制造工艺,也就是原来的7nm,但是Intel认为它相当于业界的4nm,并且首次采用多芯片整合封装,CPU、核显、输入输出等各自独立,制造工艺也不尽相同。
根据最新曝料,14代酷睿的大小核架构都会升级,其中大核架构Redwood Cove,小核架构升级到Crestmont,只是不知道数量是否都会增加,还是延续最多8+16。
核显方面将升级为Xe LPG架构,执行单元数量也从96个翻番到最多192个,同时继续支持DDR5内存、PCIe 5.0总线。
接口更改为LGA1851,搭配800系列主板。
近期中国芯片企业在4nm封装技术上的突破,让各方议论纷纷,认为最关键的还是芯片制造工艺的突破,4nm封装技术的突破没有太大意义,显然这是一个错误的看法,对于中国芯片制造来说这是一条由易及难的捷径,最终实现全产业链突破。
封装技术其实也是芯片制造的一个重要环节,它需要将芯片从一整片晶圆中挑选出合格的芯片,然后再将这些芯片与外部电路连接起来,这样芯片才能正常工作,然而如随着工艺的提升,晶体管越来越小,晶圆的导线间距也越小,其技术难度也是越来越大。
国产的4nm芯片封装技术还是一项多维异构芯片封装技术,即是将多种类型的芯片封装在一起,如此更考验封装企业的技术,封装企业需要熟悉不同芯片的构造,了解不同芯片的电气性能,在准确实现不同芯片的互联互通同时确保兼容性,这更是一项高难度的技术。
芯片封装还是向先进工艺发展的途径之一,中国台湾的芯片产业如今已居于全球顶尖水平,然而早年它们也是从封装技术开始,通过接收美国芯片的封装业务外包,逐渐了解芯片的构造,积累技术和人才,然后再进入芯片制造。
封装已成为芯片产业链的一大产业,全球前十大封装企业中有九家位居亚洲,中国大陆和中国台湾更是占据了其中的大多数,如今美国芯片行业也已认识到封装技术的重要性,正计划重新拾起封装产业,这也体现了封装环节的重要性。
近日,多款采用4nm制程芯片的手机,被用户吐槽存在发热量高和功耗高等方面的问题。据了解,此次涉嫌功耗过热的3款顶级手机芯片,分别是高通骁龙8Gen1、三星Exynos2200、联发科天玑9000,均为目前各厂商高端芯片的代表。同时,天玑9000的生产商是台积电,Exynos2200和骁龙8Gen1的生产商是三星,为排名前两位的芯片代工制造商。
去年年初,5nm芯片就因发热问题被频频吐槽,如今4nm芯片再度陷入同样的困境:先进工艺制程芯片存在漏电流问题,导致发热量过高,似乎已经成为一种“魔咒”,是芯片制程工艺最大的障碍之一。芯片的制程工艺仍在不断延伸,未来如何有效破解漏电“魔咒”已经成为整个芯片制造领域的努力方向。
一般情况下,根据登纳徳缩放比例定律,随着芯片尺寸的缩小,所需的电压和电流也会下降,由于功耗会受电压和电流的影响,当制程工艺提升、电压和电流随之下降时,其芯片产生的功耗也会降低。台积电表示,与7nm工艺相比,同样性能下5nm工艺的功耗降低30%,同样的功耗下则性能提升了15%。
然而,芯片制程进入5nm时,却频频出现功耗过高的问题。北京超弦存储器研究院执行副院长、北京航空航天大学兼职博导赵超认为,短沟道效应是造成4nm、5nm等先进工艺出现功耗问题的主要原因之一,也成为了先进制程发展过程中最大的阻碍。
半导体制造领域,集成电路的尺寸随着摩尔定律的发展而持续缩小,沟道长度也相应地缩短,这就导致了沟道管中的S和D(源和漏)的距离越来越短。因此栅极对沟道的控制能力变差,这就意味着栅极电压夹断沟道的难度变大,即产生短沟道效应,从而出现严重的电流泄露(漏电)现象,最终令芯片的发热和耗电失控。
“5nm、4nm芯片所采用的都是FinFET(鳍式场效应晶体管)结构。FinFET结构在芯片制程进入28nm后,相较于平面MOSFET器件结构,具有更强的栅极控制能力,FinFET结构可通过增加栅极与沟道的接触面积,来增强对导电沟道的控制。沟道接触面积的增加,可以从一定程度上缓解短沟道效应,从而将芯片制程继续延伸。然而,随着芯片制程逐渐发展到5nm及5nm以下,采用FinFET结构先进制程的芯片,也出现了短沟道效益造成的漏电现象,这也与FinFET本身的结构有关。FinFET所采用的是三面栅的结构,并非四面环绕式的结构,其中一个方向没有栅极的包裹。随着芯片制程的不断减小,FinFET三面栅的结构对于漏电的控制能力也在逐渐减弱,造成芯片再次出现功耗问题。”赵超表示。
未来芯片制程仍将继续向3nm甚至2nm延伸,人们也在积极考虑如何解决漏电流所导致的功耗与发热问题,包括更换新材料、采用新架构——GAA(环绕式栅极)等,以期打破长久以来存在的漏电“魔咒”。
在材料方面,赵超介绍,采用具有高介电常数的栅介质材料替代原本的二氧化硅材料,可有效解决短沟道效应造成栅极漏电的问题。而二氧化铪属于高介电常数的材料,以二氧化铪替代二氧化硅作为栅介质材料,可有效提高介电常数,减少漏电情况,并有效增加电容荷电的能力。
同时,随着芯片制程的延伸,采用四面环栅结构的GAA技术逐渐受到更多关注。复旦大学微电子学院副院长周鹏表示,相较于三面围栅的FinFET结构,GAA技术的四面环栅结构可以更好地抑制漏电流的形成以及增大驱动电流,进而更有利于实现性能和功耗之间的有效平衡。因此,GAA技术在5nm之后更小的制程中,更受到业界的普遍认可和青睐。
近日,全球领先的集成电路制造和技术服务提供商长电科技宣布,公司在先进封测技术领域又取得新的突破,实现4纳米(nm)工艺制程手机芯片的封装,以及CPU、GPU和射频芯片的集成封装。
4纳米芯片是5纳米之后、3纳米之前最先进的硅节点技术,也是导入小芯片(Chiplet)封装的一部分。作为集成电路领域的顶尖科技产品之一,4纳米芯片可被应用于智能手机、5G通信、人工智能、自动驾驶,以及包括GPU、CPU、现场可编程门阵列(FPGA)、专用集成电路(ASIC)等产品在内的高性能计算(HPC)领域。
在市场的不断推动下,包括消费电子等领域产品不断朝向小型化与多功能化发展,芯片尺寸越来越小、种类越来越多,对先进封测技术的需求也越来越高。诸如4纳米等先进工艺制程芯片,需要先进的封装技术以确保其更好的系统级电学、热学性能。
同时,封装技术也在向多维异构发展。相比于传统的芯片叠加技术,多维异构封装通过导入硅中介层、重布线中介层及其多维结合,来实现更高维度芯片封装。该中介层封装的另一特点是能够优化组合不同的密度布线和互联从而达到性能和成本的有效平衡。
2021年7月,长电科技推出的XDFOI?多维先进封装技术,就是一种面向小芯片的极高密度、多扇出型封装高密度异构集成解决方案,其利用协同设计理念实现了芯片成品集成与测试一体化,涵盖2D、2.5D、3D集成技术,能够为客户提供从常规密度到极高密度,从极小尺寸到极大尺寸的一站式服务。
面向未来,长电科技将依托自身丰富技术沉淀和全球资源,聚焦先进封装等技术和工艺,持续提升创新和产业化能力;同时,将不断加深与产业链上下游的协同合作,共同推动集成电路产业的持续发展。
关于长电科技:
长电科技是全球领先的集成电路制造和技术服务提供商,提供全方位的芯片成品制造一站式服务,包括集成电路的系统集成、设计仿真、技术开发、产品认证、晶圆中测、晶圆级中道封装测试、系统级封装测试、芯片成品测试并可向世界各地的半导体客户提供直运服务。
通过高集成度的晶圆级(WLP)、2.5D/3D、系统级(SiP)封装技术和高性能的倒装芯片和引线互联封装技术,长电科技的产品、服务和技术涵盖了主流集成电路系统应用,包括网络通讯、移动终端、高性能计算、车载电子、大数据存储、人工智能与物联网、工业智造等领域。长电科技在全球拥有23000多名员工,在中国、韩国和新加坡设有六大生产基地和两大研发中心,在逾20多个国家和地区设有业务机构,可与全球客户进行紧密的技术合作并提供高效的产业链支持。
首发骁龙7gen1的OPPO Reno8 Pro是一款以拍摄能力见长的机型,选择骁龙7gen1无疑是看重了这款处理器在拍摄能力上的优势。它搭载了14 bit Qualcomm Spectra三ISP,支持三个摄像头进行拍摄,可以实现了2亿像素照片、支持的4K HDR视频的拍摄,妥妥的旗舰水平。另外值得注意的是,OPPO Reno8 Pro本身的拍摄配置也相当出众呢,不但搭载了IMX709人像镜头、IMX766主摄,而且有马里亚纳X芯片,影像能力的确是相当突出。