相位噪声如何影响频谱分析仪?频谱分析仪内部结构探讨!
扫描二维码
随时随地手机看文章
在这篇文章中,小编将为大家带来频谱分析仪的相关报道。如果你对本文即将要讲解的内容存在一定兴趣,不妨继续往下阅读哦。
一、相位噪声对频谱分析仪分辨率的影响
为何RBW滤波器的矩形系数定义会以60dB为界?如果矩形系数代表了频谱分析仪分辨不等幅正弦信号的能⼒,那如何约束⾼于底噪⽽低于60dB的不等幅信号的测量能⼒?这就要涉及到频谱分析仪本地振荡器的稳定程度,因为本振本⾝的不稳定,其相位噪声可能将靠近载波频率附近60dB以下的信号全部淹没,这时矩形系数已经没有测量意义了。
频谱分析仪的LO都是由参考源(通常是晶体振荡器,XO)倍频⽽来。没有哪种参考源是绝对稳定的,它们都在某种程度上受到随机噪声的频率或相位调制的影响,这个影响程度随时间在变化。时间的稳定度可以分为两类:长期稳定度和短期稳定度。长期稳定度是指时钟频率偏离绝对值的多少,⼀般⽤ppm(百万分之⼀)来表⽰;短期稳定度是时钟相位瞬态的变化,在时域上称抖动(jitter),在频域上称相位噪声(PhaseNiose),表⽰为指相对于载波⼀定频偏处的1Hz带宽内的能量与载波电平的⽐值,相应的单位为归⼀化的dBc/Hz。相位噪声主要影响频谱仪的分辨率和动态范围。
需要说明,在将参考源倍频得到本振的过程中,稳定度也将按倍频⽐例恶化,其结果是相位噪声变差。因此相位噪声的标定通常要对应特定的测量频率,例如在500MHz,1GHz等频率点测量;典型的相位噪声曲线经常要提供多个频率点的情况,例如偏离1kHz,10kHz,100kHz分别给出测量值,便于横向⽐较。
混频器将输⼊的射频信号和本振信号相乘然后滤波,得到变频后的中频信号。即使输⼊的射频信号是⼀个很纯净的正弦波,混频器也会将本振的相位噪声忠实地带⼊混频结果,形成⼀个具有相同相位噪声的中频信号。
因此,当我们对包含了本振相位噪声的中频进⾏“峰值检测”时,相位噪声就会体现在测量结果中。在某个RBW下,距离这个频率很近同时幅度⼜⾼于系统显⽰平均噪声电平的另⼀个信号,虽然可被RBW在频率轴分辨出来,但仍会隐藏在相位噪声之下。当然,相位噪声也是⼀种随机噪声,它和系统的显⽰平均噪声电平⼀样,随分辨率带宽的变化规律⼀致,若将分辨率带宽缩⼩10倍,显⽰相位噪声电平将减⼩10dB。这种情况下需要使⽤超过实际分辨率的RBW来测量,代价就是增加了系统的扫描时间。
二、频谱分析仪内部结构
1.输入端衰减器Attenuator
为了避免信号过大,造成频谱仪内部元件饱和甚至损坏,通常先将信号衰减,之后显示时再放大,屏幕上的功率值为实际的功率值,无需换算,单衰减量通常会显示给使用者参考。
2.低通滤波器或预选器
低通滤波器的作用是阻止高频信号到达混频器。这样防止带外信号与本振相混频在中频产生多余的频率响应。微波频谱分析仪用预选器代替了低通滤波器,预选器是一种可调滤波器,能够滤掉我们所关心的频率以外的其它频率上的信号。
3.混频器Mixer及中频滤波器IFfilter
中频滤波器(IFfilter)的输入频率固定,Mixer的作用是将目标频率降至IF的频率(降频Downconvert)。Mixer将RF输入信号与本地振荡器(Localoscillator)运算后得到两组频率信号,一组是fout=(fosc-fRF),另一组是fout=(fosc+fRF),经过低通滤波器LowPassFilter后,只有较小的fout=(fosc-fRF)通过IFfilter。这个IF=(fosc-fRF)中频信号的频率就是输入信号在FRF的功率,屏幕上以一个点表示。点的高低表示功率大小。
混频器Mixer将输入频率与本地振荡器运算变为中频,这个称为降频Downconvert;本地振荡器的频率不断变化,才能待测频谱的信号从startfrequency到stopfrequency,从而得到频谱图。换句话说你在span设定的频宽就是Localgenerator扫描的频宽。
上述所有信息便是小编这次为大家推荐的有关频谱分析仪的内容,希望大家能够喜欢,想了解更多有关它的信息或者其它内容,请关注我们网站哦。