嵌入式算法17---SHA256哈希算法
扫描二维码
随时随地手机看文章
1、单向散列算法
单向散列算法,又称hash哈希函数,Hash函数(也称杂凑算法)就是把任意长的输入消息串变化成固定长的输出串的一种函数,该过程是不可逆的。Hash函数可用于数字签名、消息的完整性检测、消息起源的认证检测等。较为常用的方法包括MD算法和SHA算法。
1.1 MD(Message Digest)消息摘要算法
MD系列算法分为MD2、MD4、MD5三种算法,最常用的是MD5版本算法,用来把不同长度的数据块进行暗码运算成一个128位的散列值(hash value),用于确保信息传输完整一致。
应用场景:嵌入式系统开发中,MD5一般用于校验文件的完整性,如通过网络下载的文件,可能缺少部分或者被篡改,通过计算实际接收文件的MD5码,与原始MD5比较,判断文件是否正确。在密码存储方面,将用户输入的明文密码转成MD5码保存,后期应用只匹配比较MD5码,这样即使后台管理员也无法查看到真实密码。
具体算法可以参考 嵌入式算法9---MD5的应用与实现。
1.2 SHA(Secure Hash Algorithm)安全散列算法
SHA是一个密码散列函数家族,SHA算法主要分为SHA-1、SHA-2、SHA-3 三大类,一般使用SHA-2算法,主要有SHA-256、SHA-512、SHA-224、SHA-384四种,对于嵌入式一般选择SHA256,将任意长度的输入压缩成256位,且哈希碰撞的概率近乎为0。
应用场景:数字签名、数字时间戳、数字证书。
1.3 MAC(Message Authentication Code)消息认证码
对称加密算法是为了保证数据的机密性,hash算法是为了验证数据的完整性,而MAC算法既可以验证数据的完整性,又可以验证数据是否被篡改。似乎嵌入式开发中少见。
2、SHA256
一般嵌入式系统签名或者校验复杂版使用SHA256,也就是长度小于2^64字节的任意数据,经过哈希运算得到256比特的消息摘要。
2.1 源码
SHA256源码如下:
#include "stdlib.h" //sha256.h #define SHA256_BLOCK_SIZE 32 //SHA 256bits = 32Bytes typedef unsigned char uint8_t; typedef unsigned int uint32_t; typedef struct { uint8_t data[64]; uint32_t datalen; unsigned long long bitlen; uint32_t state[8]; } sha256_ctx_t; //api extern void sha256_init(sha256_ctx_t *ctx); extern void sha256_update(sha256_ctx_t *ctx, const uint8_t data[], uint32_t len); extern void sha256_final(sha256_ctx_t *ctx, uint8_t hash[]); //sha256.c /****************************** MACROS ******************************/ #define ROTLEFT(a,b) (((a) << (b)) | ((a) >> (32-(b)))) #define ROTRIGHT(a,b) (((a) >> (b)) | ((a) << (32-(b)))) #define CH(x,y,z) (((x) & (y)) ^ (~(x) & (z))) #define MAJ(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z))) #define EP0(x) (ROTRIGHT(x,2) ^ ROTRIGHT(x,13) ^ ROTRIGHT(x,22)) #define EP1(x) (ROTRIGHT(x,6) ^ ROTRIGHT(x,11) ^ ROTRIGHT(x,25)) #define SIG0(x) (ROTRIGHT(x,7) ^ ROTRIGHT(x,18) ^ ((x) >> 3)) #define SIG1(x) (ROTRIGHT(x,17) ^ ROTRIGHT(x,19) ^ ((x) >> 10)) /**************************** VARIABLES *****************************/ static const uint32_t k[64] = { 0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5, 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174, 0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da, 0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967, 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85, 0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070, 0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3, 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2 }; static void sha256_transform(sha256_ctx_t *ctx, const uint8_t data[]) { uint32_t a, b, c, d, e, f, g, h, i, j, t1, t2, m[64]; for(i = 0, j = 0; i < 16; ++i, j += 4) { m[i] = (data[j] << 24) | (data[j + 1] << 16) | (data[j + 2] << 8) | (data[j + 3]); } for(; i < 64; ++i) { m[i] = SIG1(m[i - 2]) + m[i - 7] + SIG0(m[i - 15]) + m[i - 16]; } a = ctx->state[0]; b = ctx->state[1]; c = ctx->state[2]; d = ctx->state[3]; e = ctx->state[4]; f = ctx->state[5]; g = ctx->state[6]; h = ctx->state[7]; for(i = 0; i < 64; ++i) { t1 = h + EP1(e) + CH(e, f, g) + k[i] + m[i]; t2 = EP0(a) + MAJ(a, b, c); h = g; g = f; f = e; e = d + t1; d = c; c = b; b = a; a = t1 + t2; } ctx->state[0] += a; ctx->state[1] += b; ctx->state[2] += c; ctx->state[3] += d; ctx->state[4] += e; ctx->state[5] += f; ctx->state[6] += g; ctx->state[7] += h; } void sha256_init(sha256_ctx_t *ctx) { ctx->datalen = 0; ctx->bitlen = 0; ctx->state[0] = 0x6a09e667; ctx->state[1] = 0xbb67ae85; ctx->state[2] = 0x3c6ef372; ctx->state[3] = 0xa54ff53a; ctx->state[4] = 0x510e527f; ctx->state[5] = 0x9b05688c; ctx->state[6] = 0x1f83d9ab; ctx->state[7] = 0x5be0cd19; } void sha256_update(sha256_ctx_t *ctx, const uint8_t data[], uint32_t len) { uint32_t i; for(i = 0; i < len; ++i) { ctx->data[ctx->datalen] = data[i]; ctx->datalen++; if(ctx->datalen == 64) { sha256_transform(ctx, ctx->data); ctx->bitlen += 512; ctx->datalen = 0; } } } void sha256_final(sha256_ctx_t *ctx, uint8_t hash[]) { uint32_t i; i = ctx->datalen; // Pad whatever data is left in the buffer. if(ctx->datalen < 56) { ctx->data[i++] = 0x80; while(i < 56) { ctx->data[i++] = 0x00; } } else { ctx->data[i++] = 0x80; while(i < 64) { ctx->data[i++] = 0x00; } sha256_transform(ctx, ctx->data); memset(ctx->data, 0, 56); } // Append to the padding the total message's length in bits and transform. ctx->bitlen += ctx->datalen * 8; ctx->data[63] = ctx->bitlen; ctx->data[62] = ctx->bitlen >> 8; ctx->data[61] = ctx->bitlen >> 16; ctx->data[60] = ctx->bitlen >> 24; ctx->data[59] = ctx->bitlen >> 32; ctx->data[58] = ctx->bitlen >> 40; ctx->data[57] = ctx->bitlen >> 48; ctx->data[56] = ctx->bitlen >> 56; sha256_transform(ctx, ctx->data); // Since this implementation uses little endian byte ordering and SHA uses big endian, // reverse all the bytes when copying the final state to the output hash. for(i = 0; i < 4; ++i) { hash[i] = (ctx->state[0] >> (24 - i * 8)) & 0x000000ff; hash[i + 4] = (ctx->state[1] >> (24 - i * 8)) & 0x000000ff; hash[i + 8] = (ctx->state[2] >> (24 - i * 8)) & 0x000000ff; hash[i + 12] = (ctx->state[3] >> (24 - i * 8)) & 0x000000ff; hash[i + 16] = (ctx->state[4] >> (24 - i * 8)) & 0x000000ff; hash[i + 20] = (ctx->state[5] >> (24 - i * 8)) & 0x000000ff; hash[i + 24] = (ctx->state[6] >> (24 - i * 8)) & 0x000000ff; hash[i + 28] = (ctx->state[7] >> (24 - i * 8)) & 0x000000ff; } } /***********************************************************************/ //test void log(char *head, uint8_t *data, uint8_t len) { uint8_t i; printf("%s:", head); for(i = 0; i < len; i++) { printf("%02X ", data[i]); } printf("\r\n"); } int main(int argc, char *argv[]) { uint8_t buff1[] = {"embedded-system"}; uint8_t buff2[] = {0x00, 0x65, 0x00, 0x6D, 0x00, 0x62, 0x00, 0x65, 0x00, 0x64, 0x00, 0x64, 0x00, 0x65, \ 0x00, 0x64, 0x00, 0x2D, 0x00, 0x73, 0x00, 0x79, 0x00, 0x73, 0x00, 0x74, 0x00, 0x65, 0x00, 0x6D }; uint8_t sha256_result[32] = {0}; sha256_ctx_t sha; sha256_init(&sha); sha256_update(&sha, buff1, strlen(buff1)); sha256_final(&sha, sha256_result); log("buff1 sha256", sha256_result, 32); sha256_init(&sha); sha256_update(&sha, buff2, sizeof(buff2)); sha256_final(&sha, sha256_result); log("buff2 sha256", sha256_result, 32); sha256_init(&sha); sha256_update(&sha, buff1, strlen(buff1)); sha256_update(&sha, buff1, strlen(buff1)); sha256_update(&sha, buff1, strlen(buff1)); sha256_final(&sha, sha256_result); log("buff1*3 sha256", sha256_result, 32); return 0; }
2.2 应用
对嵌入式系统,在RAM空间有限的情况下,对较长的数据进行运算,SHA256是可以分段多次传入数据的。如上使用范例第3段所示。一般用于校验密钥或文件是否传输错误或被篡改。
3、 SHA256与MD5比较
一般嵌入式系统使用的单向散列函数是MD5和SHA256。两者都是实现对任意长度输入,经运算输出固定长度的摘要数据。
无限多可能的输入数据转换成了数量有限的输出值,理论上是会出现两个不同的输入值运算结果相同,这种情况称为碰撞,即不同的消息产生同一个散列值的情况。
MD5是输出128比特的散列值,而SHA256是256比特;可见SHA256的安全性略高,但其运算耗时也多。
具体应用选择哪种并没太严格的标准。