量子计算机为什么快?如何构建容错量子计算机?
扫描二维码
随时随地手机看文章
在这篇文章中,小编将为大家带来计算机" target="_blank">量子计算机的相关报道。如果你对本文即将要讲解的内容存在一定兴趣,不妨继续往下阅读哦。
一、量子计算机为什么快
那么为什么量子计算机能算的这么快呢?这是由它的工作原理决定的。不过在介绍量子计算机的工作原理之前,有必要先简单了解下传统计算机是如何工作的,只有这样才能直观知道量子计算机到底提升在什么地方。
传统计算机的最小组成单位是晶体管,它本质就是一个开关,所以计算机最本质的工作原理就是利用晶体管的开和关,去表示0和1。这也是计算机里表示数的最小单位:比特,也叫做1位。有了0和1,我们就可以用二进制表示所有的数了,比如前面的3就是011,5就是101。我们还可以用很多个晶体管组成各种电路来完成特定的运算,比如加减乘除。然后这些简单的电路可以再组合成更加复杂的电路,最终形成一个完整的计算机芯片。
现代计算机芯片里包含了成百上千亿个晶体管,比如苹果的M1 Ultra里就有1140亿个晶体管。也有统计数据说,到2025年,世界上所有芯片里晶体管的数量总和,会超过世界上所有人身体里的细胞数量总和。毫不夸张的说,现代文明就是建立在这一个个小小的晶体管上的。
但是尽管有这么多晶体管,它们却有一个根本的问题,那就是每个晶体管在同一个时刻只有一个值。因为晶体管的状态要么是开要么是关,所以只能表示0或者1。也就是说,做一次计算,只能得到一个固定的结果。
所以如果要进行大量计算的时候,只有两种办法,一个是加快每次计算的速度,比如提高CPU的计算频率,另外一个就是多个计算同时进行,比如采用更多的CPU内核、或者买更多的计算机并行运行。但是对于前面说的特别复杂的问题,要算15万年才能解决的问题,买成千上万台服务器可能都解决不了。这个时候,量子计算机的优势就展现出来了。
二、如何构建容错量子计算机
科学家通常希望通过将量子信息传播到许多冗余的量子位来补偿这些高错误率。这将有助于量子计算机检测和纠正错误,从而使研究人员迄今为止开发的一千个左右的“物理量子比特”组成一个有用的“逻辑量子比特”。重要的是,“逻辑量子位”是抽象的,它不是由单个被捕获的原子或光子或任何量子计算介质组成,而是一个能够执行实际计算并跨越多个物理量子位的实体。
量子不可克隆定理表明,对任意一个未知的量子态进行完全相同的复制过程不可实现,需要通过将逻辑量子信息分配到多个物理系统的纠缠态来实现冗余。这就需要一套通用的门,对所有算法进行编程。
量子门是构建量子计算机的基本单元,实现高保真度的量子门操作是容错量子计算的必要条件。因此,研究人员在逻辑量子位中准备了一个特殊的状态,并通过纠缠门操作将其传送到另一个量子位来演示T门。
在编码过的逻辑量子位中,存储的量子信息被保护着,不会出错。但如果不进行计算操作,这样的量子位就是无用的。因此,研究人员在逻辑量子位上进行了操作,使基础物理操作引起的错误可以被检测和纠正,并在编码的逻辑量子位上实现了通用门集的第一个容错演示。
可以说,在容错量子位中,实现基于两个量子位(一个 CNOT门,即量子受控非门)和一个逻辑T门的计算操作难以进行。但该研究在离子阱量子计算机上实现了通用量子门集,这对于容错量子计算机的发展具有重大意义。
上述所有信息便是小编这次为大家推荐的有关量子计算机的内容,希望大家能够喜欢,想了解更多有关它的信息或者其它内容,请关注我们网站哦。