当前位置:首页 > 公众号精选 > 瑞森半导体
[导读]一款优秀的驱动电源怎样设计出来呢?看瑞森LLC恒流LED照明方案

随着欧盟ERP新能效标准的实施,各国家、社会团体对照明环境品质的标准提升,大家把目光开始聚焦到LED照明灯具的各个细节末梢,包括:光源板、导光板、灯具外壳套件、驱动电源等。尤其是驱动电源是整个LED灯具的关键所在,决定整灯的光品质﹑光效率﹑频闪系数﹑整灯的寿命。


一款优秀的驱动电源怎样设计出来呢?特别是LLC谐振拓扑的恒流方案,很多工程师朋友们明白它的优异,但设计时拿捏不准,这是普遍存在的现象。跟随小编步伐,带您了解瑞森LLC芯片功能及使用注意事项,按设计步骤一步步呈现给大家,让工程师朋友可以快速实现优秀的方案。


瑞森助您实现优秀的LLC恒流LED照明方案

一.瑞森LLC谐振芯片RSC6105S的各PIN脚定义与功能说明

瑞森助您实现优秀的LLC恒流LED照明方案详细介绍:

PIN1 VIN高压启动的输入脚,最高耐压可达DC600V,启动电流在1.7mA, 一般应用是从高压电解处串接两个1206 100K 电阻串联引到PIN1, 在整个环路未建立起来时,是靠这个引脚的电压供电后通过内部连接到PIN3 VCC,然后把VCC电容慢慢充电到芯片的启动电压大于15V后,芯片开始正常工作;整个环路建立起来后VIN脚内部关断,VCC通过外部变压器辅助绕组供电维持芯片正常工作;

PIN2 NC 空脚加大高低压PIN脚间距;

PIN3 VCC 信号电源引脚,工作电压范围8-20V,工作电流在0.8mA,静态工作电流是720uA;

PIN4 NC 空脚;

PIN5 FB 电压反馈输入,VFB中心值是1.2V,该引脚的功能主要是限定空载电压的最大幅度,芯片空载保护属于打嗝模式,可以有效降低空载损耗,轻松符合能效要求待机在0.5W引内的要求;

PIN6 CS 电流采样正弦波信号输入该PIN脚是通过线路中的互感电感采样得到全波的正弦波信号,通过电阻转换为电压信号后,输入到CS PIN脚,内部连接到压控振荡器,根据输入进来的电压幅值大小以及正弦波的频率,压控振荡器输出对应的方波来控制LG与HG端的MOS开关频率,实现恒流调节控制;

PIN7 GND 信号地参考电平脚,主要连接VCC、FB对应元件地线;

PIN8 PGND 功率地参考电平脚,主要连接低边MOS的S端地线;

PIN9 LG 半桥驱动低边栅极控制输出,控制低边MOS开与关;上升沿时间时间为60nS,下降沿时间为35nS;

PIN10 PVCC 功率电源主要是为低边MOS的栅极提供开启的电平;‘

PIN11 NC 空脚 加大高低压PIN脚间距;

PIN12 HS 半桥驱动高边地;

PIN13 HG 半桥驱动高边栅极输出,控制高边MOS开与关;上升沿时间时间为30nS,下降沿时间为35nS;

PIN14 HB 半桥驱动高边电源,通过外置的一个二极管与电容组成自举回路,为高边MOS的开启提供电平;

二.内部功能框图

瑞森助您实现优秀的LLC恒流LED照明方案

RSC6105S系列芯片是适用于LLC谐振拓扑,带有半桥驱动的恒流控制电路的芯片,最高工作频率在130KHZ;内部集成了的模块包括:逻辑输入信号处理电路、欠压检测电路、过压保护电路、过温保护电路、CS反馈信号整流电路、误差放大器电路、压控振荡电路、电流过零检测电路(ZCD)、电平位移电路等模块;并且可自动设置死区时间,防止高端和低端输出功率管的同时导通,让方案设计简单可靠,对功率器件的选择要求精度放宽;该系列芯片具备开路保护,短路保护,过温保护等保护功能。

三、设计芯片引脚参数注意事项

3.1 首先高压启动PIN脚,关乎到启动速度快与慢,前级不加APFC时采用2100K串联,加APFC时采用2150K串联;

3.2 VCC正常设计时使用工作范围在10-17V,中心电压输出时VCC设计在16V左右;VCC电容规格2.2UF即可,不需要更大容量的电解电容;

3.3 空载电压的设定在最大拉载电压的1.2-1.3倍;

3.4 FB的PIN脚上偏与下偏电阻电容需要靠近芯片引脚节点;

3.5 CS电感的互感只需要1:1,圈数6TS,磁芯不要气息,取样电阻靠近芯片引脚;CS负载电阻的地与MOS管的地分开回到电解电容的地。

3.6.HB 半桥驱动高边电源,通过外置的一个二极管与电容组成自举回路,该二极管需选用快恢复二极管的类型(FR.ES.US系列);

3.7芯片设计时,注意避开外部强电场,强磁场与金属外壳部分,减少干扰。

以上是对于芯片PIN脚各功能说明、内部框图、主要功能脚的注意事项说明,利于各位工程师朋友们对芯片功能加强理解,应用时做好参数设定。重点是该方案有自动设置死区时间这个特点,可以让工程师担心的上下管MOS共同导通的问题完全抛开,在选料与变压器的设计方面不局限,让方案做起来放心可靠,缩短LLC方案研发周期、快速稳定,实现量产!

在后续的文章里,我们会持续分享相关技术解释,敬请关注!

瑞森半导体,智造中国芯,持续创新为健康照明保驾护航!

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭