集成IC简化了移动平台中的电源管理
扫描二维码
随时随地手机看文章
移动电话和平板电脑等便携式设备需要电源管理技术来满足日益具有挑战性的性能要求。消费者正在以新的方式使用智能手机:他们希望显示高清 GPS 视频和地图;进行双向视频通话;玩更吸引人的游戏;和流音乐。此类应用的片上系统 (SoC) 项目还必须符合严格的散热目标,同时满足长电池寿命要求。
第三代“智能”手机将传统手机与个人数据助理(PDA)、数码相机(DSC)和音乐播放器(MP3)等功能相结合。可充电锂离子 (Li-ion) 电池是移动电子产品的电源。它的高能量密度保证了比其他类型的电池在尺寸和重量上更大的功率。此外,它的工作电压使其能够为 DC/DC 解决方案获得长寿命和高转换效率。
估算移动设备的能耗是设计的基本要素。目的是设计设备以最小化其能量消耗。振荡器、CPU、I/O 端口和模拟外设等单个组件必须被视为计算的一部分。有效的能源管理提出了越来越复杂的设计挑战。电池寿命低会导致客户不满意。
电池
为了满足这些设计目标,电源管理子系统的设计从电池开始。充电周期、老化和温度等因素会随着时间的推移降低锂离子电池的性能。正确管理和控制可充电电池对于优化电池寿命至关重要。
电池管理由三个部分组成:充电监控、保护和控制。电池监控和保护 IC 通常由电池本身提供。然而,充电控制是便携式设备的一部分。随着时间的推移,充电控制器件有了显着的发展,为高密度、高速数字电路实现了更短的最小栅极长度,但也为更多的模拟和电源应用实现了更高电压的器件。
线性控制拓扑在低功率电池组充电到 1 A 以下的应用中效果很好。但是,开关模式拓扑更适合需要 1 A 或更高充电速度的大型电池组。开关模式拓扑更高效,并且在充电过程中产生的热量最小,但如果封装不正确,会产生电磁干扰 (EMI)。
Texas Instruments 的 bq24259 是一款开关模式电池充电管理和系统电源路径管理器件,适用于单节锂离子和锂聚合物电池。IC 分三个阶段自动为电池充电:预调节、恒流和恒压。
该器件支持 3.9V 至 6.2V USB 输入电源,包括具有 6.4V 过压保护功能的标准 USB 主机端口和 USB 充电端口。该器件支持 USB 2.0 和 USB 3.0 电源规范,具有输入电流和电压调节功能。为了设定默认输入电流限值,bq24259 获取系统检测电路(如 USB PHY 器件)中的结果。该器件还具有快速启动功能和高达 1.5A 的精确限流能力,能够为 VBUS 提供 4.55V 至 5.5V(默认为 5V)的可调电压,支持 USB On-the-Go 运行。
移动和便携式锂离子设备的设计人员可以通过使用 MAX17262 单节电池和 MAX17263 单节/多节电池集成电路的充电电平指示器来延长电池寿命并提供有关电池充电状态 (SOC) 的信息,从而提高性能来自美信集成。MAX17262 和 MAX17263 器件将传统的库仑计数与新的 ModelGauge m5 EZ 算法相结合,可实现电池的高精度 SOC,无需对电池本身进行表征。
多核芯片的电源管理
SoC 项目中的计算量不断增加,以通过执行机器视觉和其他深度学习算法的硬件加速器添加更多功能。然而,与此同时,这些功能强大的多核芯片需要能够进一步提高能效并创建更灵活的电源序列的解决方案。
对降低能耗的需求和不断增加的移动设备的出现将微电子技术导向越来越多的超低功耗解决方案,这些解决方案利用了动力、太阳能、热能和射频 (RF) 等环境能源。充分利用这些资源并不容易。检测、控制和调节是设计中的关键因素,可以确定能量收集系统的整体效率。
电源管理系统的挑战是以最大效率提供恒定电压输出。随着微电子技术的最新进展,低功耗系统可以管理能量收集,以满足当今集成电路在不同工作情况下的微瓦和纳瓦低功耗。
优化能源性能的重要性变得更加关键,技术上也更加困难。电源管理集成电路 (PMIC) 具有高度可编程性,使其能够支持单核或多核应用处理器以及所有智能手机子系统(例如网络和堆栈连接(3G、4G LTE、 Wi-Fi、蓝牙和 NFC)、显示器、百万像素相机等。