AI用于小型机器需考虑什么?企业为AI平台选择存储需考虑3点
扫描二维码
随时随地手机看文章
在这篇文章中,小编将为大家带来人工智能的相关报道。如果你对本文即将要讲解的内容存在一定兴趣,不妨继续往下阅读哦。
一、人工智能用于小型机器需考虑什么
既然人工智能对小型机器具有实用价值,为何没有被大量开发呢?答案是受限于算力。人工智能推理是神经网络模型计算的结果。可以把神经网络模型看作是大脑处理图像或声音的粗略近似形态,将其分解为非常小的片段,然后在这些小碎片组合在一起时识别出模型。现代化视觉问题的主要模型是卷积神经网络(CNN)。这类模型在图像分析方面非常出色,在音频分析方面也非常有用。问题在于,这些模型需要数百万或数十亿次的数学计算。对于传统硬件设计,这些应用在实施时却会面临一些困难抉择:
- 使用低成本、低功耗的微控制器解决方案。虽然平均功耗可能很低,但卷积神经网络可能需要几秒钟时间来计算,这意味着人工智能推理不是实时的,并会消耗大量的电池电量。
-购置一个昂贵的高性能处理器,能在规定延迟内完成这些数学运算。不过,这些处理器通常很大,需要很多外部组件,包括散热器或类似的冷却组件。好处是,它们执行人工智能推理的速度非常快。
-低功耗微控制器解决方案的速度太慢,无法发挥作用,而高性能处理器方法会超出成本、尺寸和电源预算,可以说上述两种方案都不够理想,难以实施。
由此可见,人们需要的是一种全新的嵌入式人工智能解决方案,尽可能减少卷积神经网络计算所需的能耗。人工智能推理需要以比传统微控制器或处理器解决方案更少的能量来执行,并且无需借助能耗高、尺寸大、成本大的外部组件(如存储器)。如果人工智能推理解决方案实际上能够消除机器视觉的能量损失,那么即便是最小的设备也能看到并识别周围世界发生的事情。
二、企业为AI平台选择存储需考虑3点
在企业为AI平台选择存储设备之前,必须首先考虑以下几点:
1、成本。AI数据存储设备的价格对企业来说是一个关键因素。显然,高管层和那些参与采购决策的人会希望存储尽可能具有成本效益,在许多情况下,这将影响组织的产品选择和策略。
2、可伸缩性。如上文所说,在创建机器学习或AI模型的过程中,收集、存储和处理大量数据是非常必要的。机器学习算法要求源数据呈指数增长,才能实现精度的线性提高。创建可靠而准确的机器学习模型可能需要数百TB甚至PB的数据,而且这只会随着时间的推移而增加。
存储成本的变化引入了分层存储或使用多种类型的存储来存储数据的概念。例如,对象存储是存储大量不活跃的AI数据的良好目标。当需要处理数据时,可以将数据移动到对象存储中的高性能文件存储集群或节点上,一旦处理完成,就可以将数据移动回来。
3、性能。AI数据的存储性能有三个方面。首先,可能也是最重要的是延迟,也就是软件处理每个I/O请求的速度。低延迟很重要,因为改善延迟对创建机器学习或AI模型所需的时间有直接影响。复杂的模型开发可能需要数周或数月的时间。通过缩短这个开发周期,组织可以更快地创建和细化模型。在检查延迟能力时,由于对象访问的流特性,对象将引用时间存储为第一个字节,而不是单个I/O请求的延迟。
机器学习数据可以由大量的小文件组成。在这个领域,文件服务器可以提供比对象存储更好的性能。这里需要问AI存储方案供应商的一个关键问题是,在大文件类型和小文件类型上,他们的产品的性能特征会如何变化。
上述所有信息便是小编这次为大家推荐的有关人工智能的内容,希望大家能够喜欢,想了解更多有关它的信息或者其它内容,请关注我们网站哦。