当前位置:首页 > 公众号精选 > 射频工程师的日常
[导读]对于温度参数,比较典型的就是三极管的导通电压Ube,Ube会随着环境温度的升高而降低,硅三极管的Ube室温下约为0.7V。资料显示,硅三极管发射结正向压降的变化量是每增加1℃,Ube就降低2.5mV。我经常看到下面这个电路,并联一个二极管来降低三极管的受温度的影响,当Vbe下降或上升时,二极管VD1会有同样的温度特性,这样基级偏置电流Ib变化就很小了。

本来前几天就准备写一篇关于三极管开关电路的文章了,自己也认为比较简单,不是什么大问题。开关电路大家肯定经常用到,无非是像下图这样。


但是写的时候,截止状态倒是很好判断,饱和状态却不是直接能看出来的,所以就拖到了今天。三极管开关电路有以下几个问题:

1.三极管饱和与截止判断条件是什么?

2.什么是发射结、集电结的正偏与反偏?

3.什么是临界饱和与深度饱和?

4. 进入临界饱和与深度饱和的条件?

5.三极管开关电路基极、集电极电阻的选取?

6.三极管的开关速度受什么影响?

7.三极管会受温度影响吗?

8. 有哪些常用的三极管?


1. 三极管饱和与截止判断条件是什么?


饱和--发射结正偏,集电结正偏;

截止--发射结反偏,集电结反偏;


2. 什么是发射结、集电结的正偏与反偏?



如上图所示,NPN三极管内部有2个PN结,分别为发射结和集电结。


  • 集电结正偏:集电极电压低于基极时,集电极与基极PN结正向,Uce

  • 集电结反偏:集电极电压高于基极时,集电极与基极PN结反向,Uce>Ube;

  • 发射结正偏:发射极电压低于基极时,集电极与基极PN结正向,Ube=0.7V;

  • 发射结反偏:发射极电压高于基极时,集电极与基极PN结反向,Ube<0.7V;


3. 什么是临界饱和与深度饱和?


  • 临界饱和是三极管从放大状态过渡到饱和状态的临界点;

  • 深度饱和没有具体的定义,基极电流要足够大,网上看到大于2倍临界饱和Ib。


4. 进入临界饱和与深度饱和的条件?


从上图可知,Uce=VCC-Ic*Rc;

当Uce=0时,Icmax=VCC/Rc,此时临界基极电流Ib=Ic/β=VCC/βRc。


饱和状态需通过Ib来判断:


  • 当Ib=VCC/βRc时,三极管基本处于临界饱和状态。

  • 当Ib>2VCC/βRc时,三极管基本进入深度饱和状态。


5.三极管开关电路基极、集电极电阻的选取?


以LMBT3904LT1G为例,首先确定R6,根据后级所需最小电流确定R6最大值,然后根据Ic承受最大集电极电流确定R6最小值。正常情况下,R6的选值范围一般在1K~10K左右,对应的驱动电流范围为3.3mA~330uA,本文选R6=10kΩ。



临界饱和时,VCC=3.3V,Ic=0.33mA,如上图所示,假设β=70,Ib=VCC/βRc=Ic/β=0.33/70=4.7uA,因此只要Ib大于4.7uA即可。Rb<(3.3-0.7V)/4.7uA=553kΩ,本例中Rb=R3 = 10K,Ib = (3.3-0.7)/10K = 0.26mA>4.7uA.


6.三极管的开关速度受什么影响?


LMBT3904LT1G为例,下图为开关测试电路。


从下图的测试曲线可以看出:


  • 当Ic/Ib=10时,Ic从1mA增加100mA时,上升和下降时间都在减小,因此上拉电阻Rc减小,开关的上升/下降时间也随之较小。

  • 当Ic不变的时候,Ic/Ib=10比Ic/Ib=20下降时间小,因此串联电阻Rb减小,开关的下降时间较小。



7. 三极管会受温度影响吗?

对于温度参数,比较典型的就是三极管的导通电压Ube,Ube会随着环境温度的升高而降低,硅三极管的Ube室温下约为0.7V。资料显示,硅三极管发射结正向压降的变化量是每增加1℃,Ube就降低2.5mV。我经常看到下面这个电路,并联一个二极管来降低三极管的受温度的影响,当Vbe下降或上升时,二极管VD1会有同样的温度特性,这样基级偏置电流Ib变化就很小了。



8. 有哪些常用的三极管?


LMBT3904LT1G/LMBT3906LT1G,L9012PLT1G/L9013QLT1G,PMBT3906,215/PMBT3904,215,MMBT3904/MMBT3906,BC817-40,215/BC807-40,215,S8050/S8550、MMBT4401LT1G/MMBT4403LT1G、BC846/BC856、MUN2213T1G、MMBT5551LT1G.

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭