人工智能有哪些层次?大佬带你看人工智能中下游发展
扫描二维码
随时随地手机看文章
在这篇文章中,小编将为大家带来人工智能AI的相关报道。如果你对本文即将要讲解的内容存在一定兴趣,不妨继续往下阅读哦。
一、人工智能的3个层次
现在很多业界人士都对强人工智能和弱人工智能有很清晰的定义,其实强的人工智能还是存在比较遥远的探索阶段,它是关于自我意识方面比较深层次的探索,我们关注最多的是弱的人工智能。
弱的人工智能有三个定义,它主要具备了3C特性,第一个就是人工智能通过深度学习和神经网络算法,能够对人类的一些知识感知实现机器理解。第二个就是机器视觉和语音识别,能够通过机器对外界的行为进行一个感知。第三,协作的关系。这个协作是指运动器官,通过机器外部控制器完成人类对他指令行为习惯的驱使,这是3C的特征。
整个产业链定位分为三个层次:第一是最下层的基础设施层,很多的机器视觉,包括语音识别需要很多的算法、硬件计算平台和一些软件的开发平台,还有刚才说的图像库资源,包括语音识别库资源,都是有基础设施层的布局。
第二个是技术研发层面,涵盖了包括机器学习、语音识别和机器视觉,还有智能机器人等三到四个重要的纬度,其中汉柏科技,在机器视觉领域做得就非常出色。
第三个是应用层,在人工智能产业行业应用最主要几个应用领域中,机器视觉的应用领域非常深、非常多,从整个产业链的全景图来讲,中国的人工智能产业处在快速的生态的构建期。
从整个机器视觉的领域来讲,它是处在快速的重构期,通过市场分析来看,机器视觉并不是特别新兴的领域,这从最早图像处理衍生到现在,市场上有很多大的厂商对智能安防和交通做了很久的深耕,他们最开始不是做机器视觉、人脸识别起家的,在这几个行业中很多厂商都处于并驾齐驱、快速发展阶段。
通过对产业全景图梳理的大体的框架可以看到,整个人工智能全产业链包括基础设施、技术研发和应用层三个层面。
二、人工智能中下游发展
(一)中游
技术层作为人工智能产业的核心,主要依托基础层的运算平台和海量数据资源进行识别训练和机器学习建模,以开发面向不同领域的应用技术,对应用层的产品智能化程度起着决定性作用。根据技术层级分为通用技术层、AI软件框架层和算法模型层。
算法作为人工智能技术的引擎,主要用于计算、数据分析和自动推理。当前最为主流的基础算法是深度学习算法,深度学习可以从大量数据中自动总结规律,并使其适应自身结构,从而应用到案例中。随着基础算法的成熟和稳定,算法发展重点转向工程实现——软件框架,很多企业开始转向建设算法模型工具库,将算法封装为软件框架,提供给开发者使用。
目前美国是该领域发展水平最高的国家,以谷歌、Facebook、IBM和微软为主的科技巨头均将人工智能的重点布局在算法理论和软件框架等门槛高的技术之上。而我国基础理论体系尚不成熟,鲜有拥有针对算法的开放平台,百度的Paddle-Paddle、腾讯的Angle等国内企业的算法框架尚无法与国际主流产品竞争。
(二)下游
应用层是基于技术层的能力,去解决具体现实生活中的问题。比如利用计算机视觉技术,实现金融、安防等多个领域的人脸识别;利用智能语音技术,实现智能音箱、录音笔等的语音识别;利用自然语言处理技术,用于智能客服的问答。
在实际的应用中,技术层和应用层的关系是相互交叉的,某个领域的应用可能用到多个维度的技术层的能力,比如金融行业的应用对于智能语音、计算机视觉、自然语言处理技术都会有需求;同样某个技术层的能力也可以广泛应用到多个不同的应用领域,比如计算机视觉技术可以广泛应用到金融、安防、医疗、交通、教育等多个维度。
上述所有信息便是小编这次为大家推荐的有关人工智能的内容,希望大家能够喜欢,想了解更多有关它的信息或者其它内容,请关注我们网站哦。