当前位置:首页 > 智能硬件 > 人工智能AI
[导读]机器学习算法可以按照不同的标准来进行分类。按照训练样本提供的信息以及反馈方式的不同,将机器学习算法分为监督学习、无监督学习和强化学习。

机器学习算法可以按照不同的标准来进行分类。按照训练样本提供的信息以及反馈方式的不同,将机器学习算法分为监督学习、无监督学习和强化学习。

监督学习

监督式学习(Supervised Learning),是机器学习的一种方法,可以由训练资料中学到或建立一个模式(函数/learning model),并依此模式推测新的实例[12]。训练资料是由输入物

件(通常是向量)和预期输出所组成。函数的输出可以是一个连续的值,或是预测一个分类标签。一个监督式学习者的任务在观察一些事先标记过的训练范例(输入和预期输出)后,去预测这个函数对任何可能出现的输入的输出。要达到此目的,学习者必须以“合理”(见归纳偏向)的方式从现有的资料中一般化到非观察到的情况[13]

根据标签类型的不同,又可以将其分为分类问题和回归问题两类。分类问题的目标是通过输入变量预测出这一样本所属的类别,例如对于植物品种、客户年龄和偏好的预测问题都可以被归结为分类问题。这一领域中使用最多的模型便是支持向量机,用于生成线性分类的决策边界。随着深度学习的发展,很多基于图像信号的分类问题越来越多地使用卷积神经网络来完成。回归主要用于预测某一变量的实数取值,其输出的不是分类结果而是一个实际的值。常见的例子是包括市场价格预测、降水量预测等。人们主要通过线性回归、多项式回归以及核方法等来构建回归模型。

监督式学习有两种形态的模型:一种是全域模型,会将输入物件对应到预期输出;另一种是将这种对应实作在一个区域模型(如案例推论及最近邻居法)。为了解决一个给定的监督式学习的问题(手写辨识),必须考虑以下步骤:

1)决定训练资料的范例的形态。在做其它事前,工程师应决定要使用哪种资料为范例。譬如,可能是一个手写字符,或一整个手写的辞汇,或一行手写文字。

2)搜集训练资料。这资料需要具有真实世界的特征。所以,可以由人类专家或机器(或感测器的)测量中得到输入物件和其相对应输出。

3)决定学习函数的输入特征的表示法。学习函数的准确度与输入的物件的表示方式有很大的关联度。传统上,输入的物件会被转成一个特征向量,包含了许多关于描述物件的特征。因为维数灾难的存在,特征的个数不宜太多,但也要足够大,才能准确地预测输出。

4)决定要学习的函数和其对应的学习算法所使用的数据结构。譬如,工程师可能选择人工神经网络和决策树。

5)完成设计。工程师接着在搜集到的资料上跑学习算法。可以借由将资料跑在资料的子集(称为验证集)或交叉验证(cross-validation)上来调整学习算法的参数。参数调整后,算法可以运行在不同于训练集的测试集。

无监督学习

无监督学习(Unsupervised Learning)是机器学习的一种方法,没有给定事先标记过的训练示例,自动对输入的数据进行分类或分群[15]。与监督学习不同,非监督学习并不需要完整的输入输出数据集,并且系统的输出经常是不确定的。它主要被用于探索数据中隐含的模式和分布。非监督学习具有解读数据并从中寻求解决方案的能力,通过将数据和算法输入到机器中将能发现一些用其他方法无法见到的模式和信息。

常见的无监督学习算法包括:稀疏自编码(sparse auto-encoder)、主成分分析(Principal Component Analysis,PCA)、K-Means算法(K均值算法)、DBSCAN算法(Density-Based Spatial Clustering of Applications with Noise)、最大期望算法(Expectation-Maximization algorithm,EM)等。利用无监督学习可以解决的问题可以分为关联分析、聚类问题和维度约减。

⚫关联分析是指发现不同事物之间同时出现的概率。在购物篮分析中被广泛地应用,如果发现买面包的客户有百分之八十的概率买鸡蛋,那么商家就会把鸡蛋和面包放在相邻的货架上。

⚫聚类问题是指将相似的样本划分为一个簇(cluster)。与分类问题不同,聚类问题预先并不知道类别,自然训练数据也没有类别的标签。

⚫维度约减是指减少数据维度的同时保证不丢失有意义的信息。利用特征提取方法和特征选择方法,可以达到维度约减的效果。特征选择是指选择原始变量的子集。特征提取是将数据从高维度转换到低维度。广为熟知的主成分分析算法就是特征提取的方法。

强化学习

强化学习(Reinforcement learning,RL)是机器学习中的一个领域,强调如何基于环境而行动才能取得最大化的预期利益。其灵感来源于心理学中的行为主义理论,即有机体如何在环境给予的奖励或惩罚的刺激下,逐步形成对刺激的预期,产生能获得最大利益的习惯性行为。这个方法具有普适性,因此在其他许多领域都有研究,例如博弈论、控制论、运筹学、信息论、仿真优化、多主体系统学习、群体智能、统计学以及遗传算法。在运筹学和控制理论研究的语境下,强化学习被称作“近似动态规划”。在最优控制理论中也有研究这个问题,虽然大部分的研究是关于最优解的存在和特性,并非是学习或者近似方面。在经济学和博弈论中,强化学习被用来解释在有限理性的条件下如何出现平衡[17]。强化学习一般由5个构成要素,包括:系统环境(System Environment)、参与者(Agent)、观察(Observation)、行动(Action)和奖励(Reward)。强化学习是参与者为了最大化长期回报的期望,通过观察系统环境不断试错进行学习的过程[18]。从强化学习的定义可以看

出,强化学习具有两个最主要的特征:通过不断试错来学习、追求长期回报的最大化。在监督学习或非监督学习中,数据是静态的,不需要与环境进行交互,比如图像识别,只要给出足够的差异样本,将数据输入深度网络中进行训练即可。然而,强化学习的学习过程是动态的、不断交互的,所以需要的数据也是通过与环境不断交互而产生的。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭