关于深度学习、人工智能、物联网你了解有多少?
扫描二维码
随时随地手机看文章
想要了解“深度学习+”,我们必须回到深度学习技术在中国落地生根的历史当中。2006年,辛顿等人意外发现了多层神经网络带来的全新可能性,就此将上世纪80年代已经产生的机器学习技术,推动到了深度学习的新阶段,而深度学习技术在一系列AI测试任务上的优异表现,也重新燃起了人们对AI的期待。客观来说,经历了两次寒冬的AI技术,能够再次复兴的核心要素就是深度学习技术的出现。
但在此后的多年时间里,深度学习还仅仅停留在非常小众的范畴里,甚至在学术界中也非常小众。2010年,当时刚刚来到百度的王海峰发现了这种技术所蕴藏的巨大潜能。很快,百度内部高度认可了王海峰的发现,并早早在2012年就开始探索深度学习技术与应用。2013年1月,百度率先建立全球首个专注深度学习研究的深度学习研究院(IDL)。同时,百度也开始布局深度学习开发框架的研发。就这样,非常幸运同时也非常必然,在王海峰的敏锐发现与百度的当机立断下,中国企业没有在AI浪潮中掉队,甚至成为了全球AI探索的领路人。
此后多年时间,可以视作中国深度学习技术的创生期。在此期间,百度为代表的AI行业取得了一系列成绩,比如自主深度学习框架飞桨的问世与发展,多种深度学习算法的进步提升。随着2017年全球AI热潮的到来,中国发布《新一代人工智能发展规划》,深度学习技术的战略地位与社会需求也水涨船高。面向新的形势,百度最大化发挥了自身的深度学习技术积累与平台优势,快速进行了一系列战略升级与产业成长。
AI 会造成人类的大规模失业吗?
我觉得,如果人们对 AI 的发展报以一种厌恶和排斥的态度,那它逐渐取代部分人的工作只是时间问题。但如果我们能够接纳 AI 的发展,去主动了解、使用 AI,让它成为日常工作生活中的得力助手,那我们就不会被 AI 取代,反而会在 AI 帮助下更好的创作内容。
这并不是一种 " 打不过就加入 " 的无奈,反而是人类不断发展的必然。
正如热兵器最终取代了冷兵器,信息化军队脱胎于机械化军队,互联网一定程度上取代了传统媒体,我们之所以成为今天的我们,同样也是接纳了诸多新事物的结果。而且在当下,一些技术的发展正处于瓶颈,或者是被一张薄纸挡住未来。
比如 VR 领域的计算机图形学,同样也需要 AI 从另一个角度去攻破。就连计算机图形学大佬约翰 · 卡马克也在开拓通用人工智能的道路,并表示 " 想尝试一些没人知道会走向何方的领域 "。
无论是芯片产业的残酷博弈、AI 算法竞赛还是知识图谱比拼,甚至是不知方向的疯狂砸钱,面对 AI 带来的期待与焦虑,人类今天种种,是因为谁也说不好,哪一天 AI 技术就如爆炸一样,捅穿了蒙在未来前面那张薄纸。
在物联网时代到来后,MCU则被赋予了端侧计算中枢这一更高使命。无论是设备本身的功能还是作为物联网的一部分,物联网设备在连接、交互、安全等方面都已经离不开MCU。
而当如今智能遇上边缘,MCU又担起了新的使命。
随着MCU的算力进一步提升,高频MCU的主频已经提升到GHz级别,已经可以满足边缘端低算力人工智能需求。将人工智能集成在MCU上,只用一颗芯片实现端侧部署,正在成为新的潮流。
在过去几年里,包括瑞萨在内的多家MCU厂商都在积极探索将MCU与人工智能结合。
在日前举办的ADI MCU Media Workshop上,ADI中国技术支持中心高级工程师辛毅就介绍的ADI最新的边缘AI解决方案MAX78000就是践行的这条路线。
辛毅介绍到,MAX78000集成了卷积神经网络(CNN)引擎,能够满足边缘人工智能应用需求,并且MAX78000的设计宗旨是最大程度降低CNN引擎功耗。
为了这个目标,该器件采用了Arm Cortex-M4F处理器与32位RISC-V处理器的双内核架构,内置了CNN引擎。
辛毅形象的把这个架构比喻成“爸爸和妈妈”:两个微控制器内核是“买菜的妈妈”,CNN加速器则是“做菜的爸爸”,合力完成边缘智能的计算工作。